
P R O G R E S S P E R S P E C T I V E

Dave Hollander

Mile High XML

Tackling the data integration problem

Progress Actional® ®

®Progress OpenEdge ®

®Progress DataXtend®

®Progress ObjectStore ®

™Progress Orbacus ®

®Progress Orbix ®

®Progress Artix ®

®Progress Sonic ®

®Progress Apama ®

Progress Savvion® ™

®Progress Artix ®

Data
Services

®Progress DataDirect Connect®

®Progress DataDirect®

B U S I N E S S M A K I N G P R O G R E S S ™

www.progress.com

> common
models
in soa

http://www.progress.com/?cmpid=OTC-PDF

www.progress.com

Table of Contents

The Role of a Common Model: Simplifying the Integration Landscape . 4
Developing a Common Model . 7
Development Requirements . 8
Getting Started: Selecting the Basis for a Common Model 11
Customizing the Common Model . 13
Integration Projects Using the Common Model . 18
Importing Service Metadata . 19
Mapping Service Metadata . 19
Deployment . 20
Maintenance . 20
Conclusion . 22

http://www.progress.com/?cmpid=OTC-PDF

1

Enterprise service buses (ESBs) and service-oriented architecture
(SOA) are the latest approaches to developing and integrating systems
that are modular, flexible, and robust while reducing development costs
and time to market. ESB and SOA are mature enough to have been
successfully implemented, and success stories abound. However, reports
are also emerging of less than successful deployments citing complexity
and unexpected costs as the causes1. These disappointing results highlight
the limitations of SOA and ESB—limitations that many companies avoid by
extending their development standards beyond those commonly understood
to be part of the SOA and ESB to include a common model to simplify data
integration.

You’re probably familiar with the use of common formats in
integration. These common representations, or in some cases mutually agreed
upon formats, are often found in B2B transactions. Common models (which
have also been called common information models, common data models,
unified data models, exchange data models, common data definitions, or
canonical models) include not just the common representation, but also the
meaning of and relationships between logical entities—or the business
context of the information. For example, common models often define not
only which data elements comprise “customer,” but what “customer” means,
and how it relates to other entities such as mailing address, purchase order,
and billing record. The information that describes the model, or the model’s
metadata is often described in a formal language such as the unified modeling
language (UML).

To see how a common model can simplify SOA development, let’s
examine the standards at the foundation of SOA and ESB to better understand
what they include and their limitations. SOA formalizes the principles of
loose coupling to achieve flexibility, independence and modularity. Key to this
architecture is the service interface, which formally defines how to interact
with a service. Interfaces use metadata to define input and output documents
that contain the data the service uses, operations describing the message
sequences, and endpoints describing the technical details needed to locate and

www.progress.com

1 Babcock, Charles “The SOA Gamble: One in Three Companies Are Disappointed, Our Survey Finds,” Information Week, 8 Sept 2007.
http://www.informationweek.com/news/software/soa/showArticle.jhtml?articleID=201804546

http://www.progress.com/?cmpid=OTC-PDF

2

access the service. While service orientation does not require the use of Web
service standards, over the past several years Web service standards including
XML, XML Schema2, and Web Services Description Language3 (WSDL) have
increasingly been used as the format for service interface metadata.

While the WSDL and XML Schema standards clearly define service
interfaces documents, operations and endpoints, they do not describe
everything needed to integrate services. They do not define how to move
the documents between services, how to track the documents, or even how
to interpret the documents. To illustrate the remaining needs, consider two
different services for ordering machine parts. The first service accepts a
simple message with just the part identification number. The second uses a
more complicated message with a part description, physical characteristics
such as shape, size and weight. Both conform to SOA principles and Web
service metadata standards, but are not interoperable. To use these services
in an application you will also need to understand the part identification and
descriptions, if the acknowledgement indicates success or failure, and how to
reliably exchange messages with the service.

Reliably moving documents between services is the primary job of an ESB.
For simple service integration requirements, the endpoint can describe a transport
standard such as HTTP. For more demanding applications, ESBs are deployed for
reliable transport, tracking and auditing, integration with legacy systems, passing the
message to multiple services, and for queues to provide temporary storage.

www.progress.com

“The complexity that

threatens many teams’

success with SOA

stems from reconciling

the differences in the

schemas used in service

interface definitions and

their implied semantics.”

Figure 1:

Two Machine Part Requests with

Different Parts

2 Henry S. Thompson et. al. “XML Schema Part 1: Structures, Second Edition; W3C Recommendation” 28 October 2004
http://www.w3.org/TR/xmlschema-1/

3 Roberto Chinnici et al. “Web Services Description Language (WSDL) 2.0; W3C Recommendation” 26 June 2007
http://www.w3.org/TR/wsdl20/

http://www.progress.com/?cmpid=OTC-PDF

3

Understanding the documents being exchanged goes beyond what
can be described in the schemas in the interfaces. Schemas describe the
structure of the documents, which data fields they contain, and how the
fields are structured, but not the intent of the documents. Nor are the same
schemas used for all services. The complexity that threatens many teams’
success with SOA stems from reconciling the differences in the schemas used
in service interface definitions and their implied semantics.

New metadata techniques and standards4 are evolving for describing
semantics, but these are not fully mature nor are they widely deployed.
Successfully building large SOA applications requires resolving semantic
differences using design processes. These processes create data transforms
to convert one document format to another. The transforms are designed
using tools to define mappings between fields in the source and target
interfaces. These mappings are then expressed in XML Stylesheet Language
Transformation5 (XSLT) or Java code and then deployed into the ESB as
separate services. The use of transforms to reconcile syntactic differences
in the documents allows each service to evolve with a greater degree of
freedom and independence.

How transforms are typically developed is a significant source
of complexity in large SOA projects. While the ESB and transforms break
away from the complexity of point-to-point run-time integration, they do not
overcome the point-to-point dependency in the design process. Point-to-point
design means that with each and every service added to the overall system
developers must manually create transforms to each and every other service
with which it interoperates. In the worse case, the complexity increases
exponentially with each service added to the scope of the SOA project.

To create interoperable applications and services there has to be an
agreement on the meaning of the exchanged data: that is, there has to be a
shared, common model that describes the data in sufficient detail for all of
the applications to understand the intent of the messages defined in their
interfaces. The model may be informal, within the minds of the developers.

www.progress.com

4 Semantic technologies include various ontology standards, RDF, OWL
5 XSL Transformations (XSLT) Version 2.0; W3C Recommendation; 23 January 2007; Michael Kay;

http://www.w3.org/TR/xslt20/

http://www.progress.com/?cmpid=OTC-PDF

4

This informal model is what developers must use when they use simple
mapping tools as provided with many ESB systems. They must understand
the intent of all of the fields in the interfaces and explicitly map each field
to all the other fields in all the other interfaces. While this process may be
acceptable in small projects, the complexity quickly grows as the scope of the
SOA grows.

A more scalable design approach uses a formalized, shared common
model for all developers to use to understand interface data requirements and
to design mappings that reconcile the differences. With a common model,
developers reconcile their interface to the common model once and tools
create the transforms needed to integrate any pair of specific interfaces.
The power of the common model approach is that it requires developers to
map an interface only once and then compile as many different transforms
as needed. A common model simplifies how transforms are created, which
provides a scaleable, semantically aware design process for large-scale SOA
environments.

The Role of a Common Model:
Simplifying the Integration Landscape

Service-oriented architecture describes a set of standards-based
technologies and a design approach to create interoperable systems. SOA
principles can be used to create services, aggregate services into composite
applications, develop whole new applications, and to integrate existing
applications. Whether building new applications or integrating existing ones,
the goals are to create interoperable, sustainable, robust solutions: solutions
that meet today’s business needs while being flexible enough to meet future
needs. The role of the common model is to simplify the SOA landscape and
make it more practical to create and maintain.

As SOA principles become more broadly applied, the SOA landscape
becomes more diverse and heterogeneous, both from a technology and
a semantic perspective. Accommodating a diverse landscape requires an
integration-based architecture pattern in which integration techniques
are used to achieve a semantic consistency while allowing for and
accepting broad-based heterogeneity. This pattern relies on transport

www.progress.com

“The role of the common

model is to simplify

the SOA landscape and

make it more practical to

create and maintain.”

http://www.progress.com/?cmpid=OTC-PDF

5

and transformation services to enhance loose coupling between service
interfaces. The common model’s chief contribution to this pattern is to
simplify the development of the transformation services to reconcile
differences in the service document formats and semantics.

It might be tempting to use the common model in an application
development architectural pattern; however, this approach does not scale.
This pattern enforces homogeneity where a common model defines the
internal and external data structures used by applications and services. The
limitations of this approach are the significant commitment that it requires to
achieve consensus before development can begin and a strong governance
infrastructure to keep systems synchronized as enhancements are made. As
it is scaled up, without an integration layer, this tightly-coupled approach
creates complexity and cost overruns. For this reason, it is not practical to
enforce or impose a single common model across all applications.

An integration-oriented approach allows us to treat applications and
services as a heterogeneous collection of “black boxes,” to ignore their inner
workings, and concentrate on their public interfaces. The integration layer
with its transport and transformation services provides interoperability. This
approach provides developers a significant degree of independence to evolve
their systems.

To fully understand the role of a common model, consider your SOA
initiative from a distance, removed from the individual projects from which
the SOA is constructed. We will not ignore the project-level view, but just
step back to consider the overall integration landscape and then return to
how common models impact projects. The integration landscape includes
all of the applications, databases, and data resources, as well as composite
applications and any relevant trading partners and customer systems that
need to interoperate within the context of the enterprise’s business processes.
Finally, the landscape includes the ESBs and other integration layer services
specifically designed to facilitate service-to-service communication, message
exchange, and reconciliation. In the integration pattern, the role of the common
model is to simplify the development of the “shared data services.”

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF

6

A metadata landscape covers the same domain as the integration
landscape but includes only the metadata exposed in service interfaces:
metadata that describes the information flowing through the landscape.
Without a common model in the metadata landscape we have different
schemas representing each document in each service. Without the common
model, each interface requires its own data integrity rules and its own
mapping to each service it is integrated with.

www.progress.com

Figure 2:

Integration Landscape

Figure 3:

Point-to-point Metadata Landscape

COMPOSITE
APPLICATIONS

SERVICE BUS AND
SHARED DATA SERVICES

APPLICATIONS AND DATA RESOURCES

PARTNERS AND CUSTOMERS

STANDARD SCHEMA

APPLICATION
SCHEMA

SERVICE INTERFACE
SCHEMA

APPLICATION
SCHEMA

DATA INTEGRITY
RULES

MAPPING

MAPPING

MAPPING

MAPPING
MAPPING

MAPPING

DATA
INTEGRITY

RULES

DATA
INTEGRITY

RULES

DATA
INTEGRITY

RULES

http://www.progress.com/?cmpid=OTC-PDF

7

From a metadata landscape perspective, a common model dramatically
reduces the number of mappings and overall complexity. A common model
organizes all of our integration metadata into a shared context with a shared set
of semantics. With a common model, each interface is mapped once and the
data integrity rules are defined only once. The common model simplifies projects
as well; instead of having to map to every other service with which it interacts,
you can simply map the service to the common model.

In summary, the primary role of a common model is to simplify the
metadata landscape, which in turn simplifies the integration landscape.
Adoption of a common model for use in the exchange of information in SOA
greatly simplifies the metadata landscape which dramatically decreases the
overall SOA complexity while preserving the flexibility of a loosely coupled
architecture.

Developing a Common Model

A common model will not simplify the metadata landscape and overall
SOA development unless the development process and tools are designed to
make practical use of the common model. The process described here meets
these requirements. It begins with a one-time step of selecting, importing and
customizing the initial common model. After that, the project processes consist

www.progress.com

Figure 4:

Metadata Landscape with a

Common Model

COMMON MODEL

APPLICATION
SCHEMA

SERVICE INTERFACE
SCHEMA

STANDARD
SCHEMA

DATA INTEGRITY
RULESCOMMON

SCHEMA

MAPPING

CHANGE RECORD

MAPPING

MAPPING

http://www.progress.com/?cmpid=OTC-PDF

8

of: 1) mapping service models, 2) deployment, and 3) maintenance. Separating
the development and revision of the common model from the rest of the project
tasks allows project teams to focus on a small portion of the landscape at a time
and creates a natural checkpoint for good governance. As a practical matter,
you will need to choose the right tools to help you design, deploy, and govern
the data services based on the common model.

Development Requirements

To meet enterprise requirements, the process will need to be able
to be executed across multiple concurrent projects in parallel. The process
will have to have good impact analysis and reporting capabilities in order to
understand and manage interdependencies between models and projects.

Adopting a common model means customizing it to meet the specific
requirements of your landscape; however, in most companies the SOA
integration landscape is rapidly changing and only partially understood. Notice
that processes include a step to revise the common model to make it agile
enough to support incremental development and deal with the rate of change
each project.

In the SOA integration approach performance and operational
considerations are essential to success. Transforms can have significant

www.progress.com

Figure 5:

Integration Development ModelMANAGE CHANGE

INTEGRATECUSTOMIZESELECT

• Select the
 common
 model that
 will be used

• Customize
 the common
 model to
 meet
 requirements

• Integrate
 services and
 common
 model
 through
 mappings

• Deploy into
 service
 environment
 (ESB, SOA)

• Manage
 change of
 both common
 models and
 mappings

DEPLOY

http://www.progress.com/?cmpid=OTC-PDF

9

performance and operational implications depending on the programming
language used to define the transform, where the transform is executed, and
how exceptions are handled.

Any computer language can be used for transforms, but in today’s
SOA the W3C XSLT and Java are the most common. In spite of the widely
held belief that XSLT is more “standard” than Java, the reality is that XSLT
was designed for stylesheets and requires extensions to be effective in
data transforms. These extensions and the complexity of writing XSLT code
reduce the interoperability and portability of these transforms. Whereas, as a
general programming language, Java includes most of the features needed to
transform business data. Because of this, Java transforms are more portable
and will typically outperform XSLT transforms.

Where transforms are deployed in your landscape can also have
significant impact on the overall performance of your infrastructure.
Transforms can be both compute- and memory-intensive. If your landscape
can only run transforms in one system, then that system will quickly become a
bottleneck. Portable transforms that can be quickly redeployed on a different
system or even broadly distributed are needed to avoid these bottlenecks. The
lack of portability should be a major consideration when evaluating mapping
solutions, especially those that are bundled with middleware or service bus
software solutions.

The point-to-point approach, or the ability to develop both point-to-point
and two-transform services, is also an important performance requirement.
Transforms can be deployed either as point-to-point services or as two
transforms that create an intermediate common data format (figure 6). This
common data format, sometimes called a “canonical format,” is a document
that conforms to the common model. The common format is desirable in many
integration patterns, for example, the publish/subscribe (pub/sub) pattern in
which multiple services will be receiving the same document.

However, when applied broadly, the common format approach
becomes unmanageable. As new applications and services are added to the
architecture, extensions to the common message model are needed to meet
their specific data requirements. As more applications or sources are added,

www.progress.com

“The lack of portability

should be a major

consideration when

evaluating mapping

solutions, especially

those that are bundled

with middleware or

service bus software

solutions.”

http://www.progress.com/?cmpid=OTC-PDF

10

the size of this common message grows and grows, becoming unwieldy to
use and difficult to understand. As an alternative, some teams respond to
new requirements by creating new versions of the common format, and these
versions proliferate creating even more complexity.

The common model approach avoids this complexity by developing
the common model as a design-time standard. Changes are made to the
model then compiled into transforms that are deployed into run-time systems.
As the SOA grows and evolves, the existing run-time components can remain
deployed, stable, and unchanged while the design-time models change to
accommodate the new requirements. With the clear separation of design- and
run-time, you can get the benefits of a common model without sacrificing the
performance and operational benefits of point-to-point transforms.

In the common model approach, point-to-point transforms are
compiled from service to common model mappings (figure 7). These
transforms avoid the performance overhead of executing two transforms for
each exchange, which can become prohibitive for documents large enough to
use most of the allocated memory. These point-to-point transforms are ideal

www.progress.com

Figure 6.

Two Transform, Common

Format Deployment

DESIGN
TRANSFORM TO
COMMON
FORMAT

DEPLOY
TRANSFORM

DESIGN
TRANSFORM
FROM COMMON
FORMAT

DEPLOY
TRANSFORM

DESIGN TIME

RUNTIME

PORTAL
DATA

COMMON
DATA

TRANSFORM
FROM PORTAL TO
COMMON FORMAT

TRANSFORM
FROM PORTAL TO
CRM FORMAT

CRM
DATA

PORTAL CRM

http://www.progress.com/?cmpid=OTC-PDF

11

for the SOA landscape, where the request/reply exchange pattern is common.
In request/reply data from one service is passed directly to the service that
requested the data. Service reuse and scale are achieved by having multiple
services directly request and transform the data they need.

Getting Started:
Selecting the Basis for a Common Model

The development process begins with selecting then customizing the
common model for its role as the center of the metadata landscape. After

www.progress.com

Figure 7.

Compiled Transform Deployment
DESIGN
TRANSFORM
FROM PORTAL TO
COMMON MODEL

DESIGN TIME

RUNTIME

PORTAL
DATA

TRANSFORM FROM
PORTAL TO CRM VIA
COMMON MODEL

CRM
DATA

PORTAL CRM

DESIGN
TRANSFORM
FROM CRM TO
COMMON MODEL

COMPILE
TRANSFORM

MANAGE CHANGE

INTEGRATECUSTOMIZE DEPLOYSELECT

http://www.progress.com/?cmpid=OTC-PDF

12

this is done, the project-level tasks of importing service models and mapping
them to the common model can proceed in parallel. However, even selecting
a standard as the starting point for a common model can be complicated and
contentious. For example, should teams select the industry-standard model6
that best reflects their business process or should they use their current
vendors’ “standard” implementation, which might be more compatible with
their current applications, technologies, and architecture?

In most industries there are several industry and vendor standards
to choose from. Often an industry standard is considered because you may
already have applications and services that communicate using the standard.
Schemas developed by industry organizations are a great starting point
because they encapsulate a significant amount of knowledge derived from
participants with broad industry experience. Attempting to replicate this
effort in-house would be costly, time-consuming, and likely result in an inferior
starting point.

Whether you select a starting schema using the criteria outlined
below or the choice has already been made, the initial schema is unlikely to be
complete enough to fulfill your enterprise-specific requirements. Selecting an
initial schema is important but not critical to success in deploying a common
model. Far more critical than the initial schema is the customization and
enrichment needed to create a full common model complete with constraints
and other semantic consistency rules. This enrichment process helps insulate
your efforts from limitations of the initial schema.

Technical quality is often the first and only criteria considered
in the selection of a common model, but there are other important criteria
for evaluation. Technical quality describes how well the data structures are
captured in the technical metadata format being used. For example, are the
XSD schemas well constructed, easily read and understood, consistent, and
carefully crafted? Is the metadata technically compatible with your existing
metadata standards and tools?

www.progress.com

6 For more information see: Gilpin, Mike “Canonical Information Modeling Is Key To Many Information-As-A-Service and SOA
Strategies” Forrester Research, 15 Nov 2007.

http://www.progress.com/?cmpid=OTC-PDF

13

Standards organizations can collapse because of issues within the
standards organization. Don’t overlook issues with the standards body simply
because your partners or employees are involved. Factors to consider include
jurisdiction, adoption rates, industry alignment, openness, and financial
stability. While, ideally, only standards from an organization that is credible
and authoritative in its subject domain should be used as a starting point, a
common model can be derived from any industry standard.

Business alignment describes the degree to which the standard
captures semantics relevant to your business and industry. Strangely, this
is often a secondary consideration—if there is poor alignment with your
business, the standard will require extensive modifications to be useful. To
assess business alignment, extract the dictionary terms and relationships
defined in the standard and compare with those from your landscape.
While no standard will ever capture all of the nuances important to running
your business, many do a good job of establishing effective definitions for
information and processes. This is not surprising for standards were created
by experts in their fields working collaboratively within the standards
organization, where their depth of knowledge has been tempered by peer
review and open discussion.

These criteria can not only help you choose an initial schema, they
can also help you scope your common model development efforts. A selection
that fits well with all criteria will require minimal customization. But, far more
common will be a selection with compromises. Fortunately, with the right
tools, any standards-based common model can be enriched or augmented
to meet your enterprise standards and interoperability requirements. This
extended common model, placed in the heart of your exchange model, can be
used to tie together one or more standards. This means each group can make
choices that fit best with their operating model without having to sacrifice
applications and services data interoperability on the enterprise level.

Customizing the Common Model

The models created from an initial schema will need to be customized
to be attuned to your business processes and semantics. Customization

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF

14

includes adding constraints, renaming, organizing, and annotating elements to
match your company’s vocabulary and to make them easier to understand.

Organization and annotations make the model more
understandable. Annotations can be very valuable; they can describe the
meaning of the element as well as complex rules and exception handing.
Simply preserving descriptions from the data architects that present the
assumptions that were made when the model was created can help inform
integration teams as to how best to use the model.

Often annotations are defined in external documentation or
spreadsheets and maintained out-of-band. These external text and
spreadsheet files have to be maintained independently of the models
themselves. This extra documentation is time consuming to produce, seldom
referenced, and care must be taken to assure the documentation is kept up-to-
date. This can lead to poor quality data when estimating the impact of future
changes, or new projects—increasing the implementation risk on the project.

One way to mitigate this risk is to preserve the annotations in
the exchange model, in-band with the development process. Annotations
maintained within the exchange model are more likely to be current, and
accurate. By including the annotations in-band, or integrating documentation
with the development process, we ensure the most current information is
at hand for the development team. This cuts down on misinterpretation and
misuse of the model, reducing the implementation risk of the project.

Default values allow you to define what value to use for a data field
when that field is not contained in the actual XML data.

www.progress.com

MANAGE CHANGE

INTEGRATECUSTOMIZE DEPLOYSELECT

http://www.progress.com/?cmpid=OTC-PDF

15

For example, while a standard may be broadly
defined to be used internationally, your systems may
assume that a location is in the United States unless the
data indicates otherwise. This can be captured in your
models by setting the default for country in an address to
“US.” This would make the two XML documents at right
have the same meaning even though the country is left
out of the second.

Default values are very useful in a common
mapping challenge: how to map an optional source field to a required target
field. With the default value defined, mapping systems should be able to
automatically create the transformation rules for these mappings.

Constraints are rules that limit the value domain of the data field or
group. The models in your landscape will want to leverage all the constraints
defined in the schema metadata and to add additional constraints that are
specific to your data and system requirements. These constraints make the
“service contract” nature of an interface clearer about what data is required
to conform to the specification. Formalized constraints allow you to automate
validating the data against the model to detect errors. A data file that
conforms to the set of constraints defined in a schema is said to be “valid
against that schema.”

Ideally, the common model should fully describe a range of data
that is valid for every element in the documents described in the service
interfaces. However, most schemas from standards organizations have
constraints. Adding constraints to the standard schema help give the schema
teeth; it narrows the range of XML documents that conform to the schema,
ideally matching those that the service can work with. Constraints strengthen
a schema from a “suggestion” to a “standard.”

You can always add constraints to the schemas describing documents
that output from your services without risking interoperability with other
systems that are implementing that standard. Adding constraints helps
you ensure data will conform to both the standard and your own data
requirements. Note that if you have to remove constraints, you must map

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF

16

the standard as another service to describe how to handle data that is now
considered invalid.

In XML Schema, constraints can be placed on simple data elements
(fields) using datatypes and facets. Constraints can also be placed on complex
types (groups) using structure declarations and occurrence values. Like XML
Schemas, constraints can be placed on attributes (fields) and classes (groups)
in UML models. In this paper, XML Schema constraints will be illustrated.
However, the format of your common model and the tools you use to
implement it may handle constraints differently.

Simple constraints specify that a specific field or group is required.
In XML Schema, an element with the minOccur attribute set to greater than
zero indicates it is required. For example, you can make a single postal code
element in an address required by setting its minOccur and maxOccur value to
one, as shown here.

Datatypes are another means to constrain a schema. XML
datatypes use facets to describe how atomic data elements are expected
to be represented. Facets are often used to limit string lengths, such as 20
characters in a name. In the example at right, facets are used to constrain the
valid values of a PostalCode to be within 10000 and 99999.

To improve interoperability and the ability to
detect data that does not conform to your requirements,
your models should make all elements used and
expected by your applications required. Since most
standards define few required elements or datatype
facets you will have to add these simple constraints.

Enumerations constrain a data field to contain only values from
a specific set of values. For example, a CountryCode data element can be
constrained to be only one of the values provided in the list of enumeration values.

Often, standards leave enumerations out or make them “open,” or
even incomplete. Without enumerations, you will have to define rules to
determine if “US” and “USA” are valid country codes and if they are the same

www.progress.com

“To improve

interoperability and the

ability to detect data

that does not conform

to your requirements,

your models should

make all elements used

and expected by your

applications required.”

http://www.progress.com/?cmpid=OTC-PDF

17

code. Additionally, those rules have to be communicated in documentation
accompanying the schema metadata.

Using enumerations within the model’s
schema helps make it clear what values are valid for
a data field that is limited to a set of valid values.
To make this customization to your models you will
need to be able to create enumerations for some
fields or delete values for enumerations that are not
valid in your landscape. Care should be taken in adding values to existing
enumeration lists as this is extending not restricting the model and can cause
interoperability problems.

Structural constraints describe the organization of data fields
into groups. For example, the address shown here would be defined to be
a sequence of fields, starting with the street and ending with PostalCode.
Structural constraints typically should be adopted from the starting schema
without modification.

Semantic consistency rules describe complex constraints. In
general, complex constraints define an element to be constrained and a
different element whose value must be evaluated to determine the constraint.
For example, a complex rule could declare that if one data field has a specific
value then another field must be constrained to contain values in a specific
range—if an address has a country value of “US,” then there must be a valid
five-digit postal code. In addition, there may be a rule to define what happens
when data is found to be invalid.

Complex “co-variant” constraints cannot be
described using XML Schemas, but they are possible
with some common modeling tools. Complex rules
included in an exchange model should focus on data
integrity and not business logic. This helps maintain a
clear distinction between the specification of input and
output documents that the service can work with from the logic that should
be applied within the service itself.

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF

18

Integration Projects Using the Common Model

Projects to integrate new functionality or applications into the SOA
landscape are greatly simplified by using the common model. The integration
effort is just a few simple steps that leverage the existing common model
and simplify the application or service development effort. These steps are:
1) import the service metadata, 2) map the service documents to the common
model, then 3) create, test and deploy the transforms into the integration data
services.

The “map once, deploy many” nature of this architectural approach
allows developers to concentrate most of their effort on business logic
instead of all the details of the services it interacts with.

Importing Service Metadata

The first task is importing the metadata for the service. Here we
read in the metadata regardless of format and allow it to be reorganized to
be easily understood. While this task can be done manually using analysis

tools and a simple XML Schema editor, such a process is time consuming
and error prone. Full interface schemas typically have hundreds or thousands
of unique datatypes, each of which will contain dozens of data elements for
which the order, spelling and capitalization must all be faithfully reproduced.
The only realistic and scaleable solution is to use a tool to convert the import
formats, understand the file structures being used, and normalize the style
and structures to a common form.

www.progress.com

MANAGE CHANGE

INTEGRATECUSTOMIZE DEPLOYSELECT

http://www.progress.com/?cmpid=OTC-PDF

19

Whether performed manually or automatically, the import step must
simplify and normalize all of the differences to provide a common format that
can be used in the later tasks. Specifically:

>> The import process must be able to use the specific metadata format
used by standards, application adapters, and service interfaces,
which can include XML Schemas, XML DTDs, Web Service WSDL
files, and UML XMI files.

>> The process must be able to collect all of the various files included or
imported into the schema and represent them as a single model.

>> The process must be able to rationalize the various styles found in the
metadata.

Mapping Service Metadata

Service models represent the application and service interface
documents. These models are created from the metadata that defines the
exchanged messages and extended with mapping information. As with
common models, the modeling process begins with importing the schemas
but with much less customization because the service models should closely
represent the service or application they represent.

Once the metadata is imported and rationalized, its fields and groups
are be mapped to the common model. Data conversion rules are added to
the mappings if needed to define how to convert data from one datatype to
another. These mappings identify which data in the service format relates to
which data in the target format by defining field-to-field and group-to-group
relationships.

A high-quality mapping tool is essential to successfully deploying a
common model. While there are fewer mappings using the common model
than traditional point-to-point integration, the mappings play a central role
and must be easy to develop and maintain.

While there are many mapping tools on the market, the importance
of mapping to this approach makes features such as ease of use, group-level
mappings, embedded interactive testing, and the ability to manage test data

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF

20

sets essential. Mapping needs and requirements specific to using a common-
model based architecture include:

>> Support for conditional logic to express rules describing complex
relationships between source and common data formats and their
reverse relationships. The reverse relationships are particularly
important to allow the system to calculate source-to-target mappings
from the mappings to the common format.

>> Embedded data integrity rules within the transforms to simplify
deployment and improve performance.

>> Embedding the mappings within the exchange model to assure they
are kept in sync.

Deployment

After the mapping process, the transforms needed for production are
created as a result of the deployment process. In this phase we test, compile,
and then package for the target service environment. Finally, the transforms
are inserted at the appropriate place in the business process flow.

For this approach to be successful the common model must be
used to directly compile run-time components. This direct binding to run-
time systems saves time and effort, prevents errors, and assures that the
model will be kept accurate throughout the development process. Without
this assurance, the model is no longer authoritative and will quickly become
neglected and obsolete.

Maintenance

Change is inevitable throughout the integration landscape. Services,
applications, standards, and even the integration systems all evolve.
This change is driven by threats or opportunities in the market that the
enterprise must respond to. The common model approach to SOA helps give
IT the agility to execute on their new strategies and tactics by refactoring
process, applications, infrastructure, and data. It helps create a flexible IT
infrastructure that can change rapidly, at a low cost, with a low impact to the
SOA landscape.

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF

21

Effective, affordable and responsive maintenance processes are a
significant benefit of the common model approach. They provide the ability
to assess and scope the impact of change and quickly and efficiently deploy
updated metadata and transforms to affect those changes.

The common model and surrounding exchange model provide all the
details needed to understand and analyze the impact of change. The data about
the magnitude of the work can drive governance processes, budgets, timelines,
and even cost-benefit discussions—after all, not all change is good especially

in light of other competing initiatives for time, money and resources. The
governance team can focus on how to manage the change rather than consume
time and money on the invasive tasks of discovery and research.

With data at hand that details the impact of changes, issues are
identified and development activity assigned. The development activity

www.progress.com

“Effective, affordable

and responsive

maintenance processes

are a significant benefit

of the common model

approach.”

MANAGE CHANGE

INTEGRATECUSTOMIZE DEPLOYSELECT

MANAGE CHANGE

CUSTOMIZE DEPLOYSELECT INTEGRATE

http://www.progress.com/?cmpid=OTC-PDF

22

includes creating mappings to meet the needs of the new or modified
services. These mappings are tested then deployed.

Effective maintenance can heavily leverage technical capabilities that
are often overlooked or undervalued, including the following:

>> A unified metadata format for all services to enable more complete
analysis and minimize developer availability and training issues

>> Reports to understand and review new schemas and models to be
added to the landscape

>> Difference analysis that highlights changes to schemas

>> Impact analysis to understand the interrelationships between the
various source models and their maps between the models

>> Change management tools that allow analysts to accept/reject
changes to the models in much the same way as editors use “Track
Changes” in Microsoft® Word

>> Interactive, easy-to-use testing tools applied in-line with the
development process that use test data maintained in the exchange
model to create higher quality components, save significant time, and
minimize the impact on the existing production environment

Conclusion

Mainframes, client-server and now SOA continue a trend in computer
architecture: over time systems are being designed with smaller, more
modular components. Service orientation creates systems by integrating
large numbers of services defined by their interface metadata. Successfully
deployed service-oriented architecture integrates services into affordable
networked applications that are modular, flexible, and robust.

This is made practical by integration technology that leverages
Web service standards that define how services formally describe their
interfaces. With standardization come scaleable, affordable technologies
like the enterprise service bus (ESB). While ESBs can connect a large number
of services, they do not provide a scaleable approach to reconciling the

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF

23

difference between services. For the SOA methodology to successfully scale,
it must extend to include reconciling semantic differences between services.

The common-model-driven approach is a pragmatic and cost-effective
solution to reconciling these semantic differences. The approach focuses on
minimizing developer efforts while creating programs that can be effectively
deployed in today’s most demanding environments. Today’s structural
transforms designed with common models and deployed in the integration
layer will continue to be needed long into the future to reconcile structural
differences prior to semantic processing. Not only is the approach practical for
today’s needs, it helps organizations prepare for future advances in semantic
technologies by establishing a shared semantic service in the infrastructure.

Author’s Bio

Dave Hollander has been teaching computers how to help humans
communicate for over 20 years. He is a technology strategist and architect
who has been on the leading edge of many key information technologies.
Dave’s career has concentrated on information management, blending new
standards and technologies with corporate opportunities and needs.

Since its inception Dave has had a leading role in the development
of XML. He is a co-inventor, member of the first XML Working Group, co-
chaired the XML Schemas Working Group, and co-chaired in the Web
Services Architecture Working Group. Dave co-authored the W3C Standard
“Namespaces in XML,” co-authored a book entitled XML Applications
published by Wrox Press, and was technical editor for XML Schemas from
Morgan-Kauffmann. Dave has also contributed to a variety of eCommerce
standards: MISMO, OAGI, RosettaNet, OBI, and the ECO Framework.

Focused on business-oriented information management, Dave’s
corporate achievements include founding and serving as chief architect
of www.hp.com, leading the development of Contivo’s semantic modeling
technology, deploying an internal HP-wide search engine, and developing a
CD-ROM publishing system for all of HP’s technical manuals. Dave has been
on the advisory board for Cohera, XMology, OSM, and Noonetime and held
senior technology positions at Contivo, CommerceNet, Hewlett Packard, and
Bell Laboratories. Dave can be contacted at dmh@mhxml.com.

www.progress.com

mailto:dmh@mhxml.com
http://www.progress.com/?cmpid=OTC-PDF

Progress Software

Progress Software Corporation (NASDAQ: PRGS) is a global software company that enables enterprises to be operationally responsive to changing
conditions and customer interactions as they occur. Our goal is to enable our customers to capitalize on new opportunities, drive greater efficiencies, and
reduce risk. Progress offers a comprehensive portfolio of best-in-class infrastructure software spanning event-driven visibility and real-time response,
open integration, data access and integration, and application development and management—all supporting on-premises and SaaS/cloud deployments.
Progress maximizes the benefits of operational responsiveness while minimizing IT complexity and total cost of ownership.

Worldwide Headquarters

Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095 On the Web at: www.progress.com

Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw

For regional international office locations and contact information, please refer to the Web page below:
www.progress.com/worldwide

Progress, DataXtend, and Business Making Progress are trademarks or registered trademarks of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and other
countries. Any other marks contained herein may be trademarks of their respective owners. Specifications subject to change without notice.

© 2009, 2010-2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev. 08/11 | 6525-128405

B U S I N E S S M A K I N G P R O G R E S S ™

www.progress.com

http://www.progress.com/?cmpid=OTC-PDF
http://www.facebook.com/progresssw
http://www.twitter.com/progresssw
http://www.youtube.com/progresssw
http://www.progress.com/worldwide/?cmpid=OTC-PDF
http://www.progress.com/?cmpid=OTC-PDF
http://www.progress.com/?cmpid=OTC-PDF

