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Introduction 

1. In this document, we describe the work done within the UNECE Project on Input 

Privacy Preservation (IPP). The project started in January 2021 with the aim of investigating 

statistical use cases requiring input side protection, evaluating and determining the applicability 

of selected classes of techniques for selected scenarios, identifying opportunities for sharing 

knowledge within the statistical community and creating a community of practice between 

statistical organizations and external partners (academia, private sector). 

2. Modern statistical organizations need to become part of a data ecosystem and integrate 

data from multiple sources with the aim of providing richer statistical products. The potential 

of IPP techniques can help National Statistical Organizations (NSOs) to (re)use private and 

administrative data for statistical purposes while preserving data confidentiality and individual 

privacy rights. The main IPP techniques investigated in the project were Secure Multi-Party 

Computation (SMPC), Homomorphic Encryption, Differential Privacy, and Federated 

Learning. 

3. The project lasted for two years. In the first year (2021) main organizations involved in 

the project (UNECE, Eurostat, Istat (Italy), Statistics Canada (StatCan) and Statistics 

Netherlands) shared and explored five use cases that required the application of IPP techniques. 

We worked on the definition of a logical framework to describe the use cases in a standard 

way, and we generalized the use cases with the aim of making them applicable in other similar 

contexts. Moreover, we made two mini work packages (WPs): one on Private Set Intersection 

(WP1) and the other on Federated Learning (WP2). Furthermore, the initial ideas of the Multi-

Party Secure Private Computing-as-a-service (MPSPCaaS) concept were sewed that led in the 

second year to organizing an open consultation (WP3) with the aim of collecting feedback from 

external experts and stakeholder. 

4. In the second year (2022) of the project we followed a more vertical approach. We 

considered the concept of privacy preservation in a broader sense, such as Privacy Enhancing 

Technologies (PETs), also touching on the possible integration between IPP and Differential 

Privacy approaches. The activities have been divided into the following three tracks: WP1 

Private Set Intersection, WP2 Private Machine Learning and WP3 Open consultation (on the 

MPSPCaaS concept). The organizations most involved in the 2022 tracks were UNECE, 

Eurostat, Istat (Italy), Statistics Canada, Statistics Netherlands and ONS (UK). 

5. We give below an idea of the work done in the three tracks; further details are provided 

in their respective chapters in this document. 

6. Track 1: Private Set Intersection (PSI). This deals with an international trade use case 

where two NSIs want to match their international trade transactions, but for confidentiality 

reasons the microdata cannot be shared between the two agencies. Different types of PSI 

solutions are illustrated. A comparison of methods with and without typos is made by applying 

and comparing techniques such as bloom filters. 

7. Track 2: Private Machine Learning (PML). The focus was mainly to evaluate the 

robustness in terms of privacy preservation of the machine learning models trained in privacy 

preserving ways. We investigated the following three scenarios :(i) the application of 

Differential Privacy (DP) to the data compared with the application of DP to the model training; 

(ii) investigation of membership inference attacks; (iii) a custom implementation of a 

membership inference attack. 
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8. Track 3: Open consultation. We defined the concept of Multi-Party Secure Private 

Computing-as-a-Service (MPSPCaaS) and we launched an open consultation aimed at 

stakeholders (prospective users, technology experts, and privacy experts) to gather their views 

on various technical and non-technical aspects.  

9. In addition to this, in the appendix, we described the use case "Private set intersection 

with analytics: use case Istat-Bank of Italy" analyzed and shared during the first year of the 

project. It was part of the input to track 1 developed in 2022 and described in chapter 2. 
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Chapter 2 - Track 1: Private set intersection 

2.1 Motivation 

10. National Statistical Organizations (NSOs) typically have much more information about 

their import of goods than of their exports. This is partly due to efficiency reasons and partly 

due to an increased interest in controlling what enters the national borders than what exits it. 

While import values from one country should equal the export values from its partner country, 

in practice this is not the case. As a result, there is wide interest from both statistical and 

academic organizations to get a better understanding where these bilateral trade asymmetries 

come from. In addition, research into drivers and effects of exports can often run into statistical 

limitations, even though the required information would be available with the trading partner. 

To alleviate these problems, NSOs would benefit from linking their international trade data. 

11. Unfortunately, there are obstacles to linking such data at a micro (i.e., transactional) 

level in practice. One of the main issues concerns privacy. There does not typically exist a 

common transaction identifier between two NSOs that would protect the anonymity of the 

firms involved. National laws prevent sharing any information that might jeopardize this 

anonymity. While exceptions may exist to share such data amongst NSOs within the European 

Union, there is virtually no possibility to share data between NSOs where at least one is not an 

EU member. 

12. This case study examines the use of Privacy Preserving Techniques (PPT) to share 

micro data on international trade between the Netherlands and Canada. This serves several 

interests. First, it would be a way to investigate bilateral trade asymmetries at a highly detailed 

level. Previous studies have typically looked at country or product characteristics to explain 

asymmetries. By looking at a transaction level, we can also investigate firm determinants for 

example. Second, it would allow the enrichment of each NSOs’ trade statistics. Specifically, 

we are interested in the use by both importers and exporters of the Comprehensive Economic 

and Trade Agreement (CETA) between the EU and Canada that has been provisionally in use 

since September 2017. Currently, NSOs only record whether an imported good made use of 

this agreement (and as such obtained preferential tariffs), but not whether exports made use of 

it. While this information could also be provided at an aggregate level by the importing agency 

to the exporting agency, it would not allow disaggregated statistics on, e.g., the use of the 

agreement by exporters of different firm sizes. In addition, academic research that try to explain 

why the utilization rate of trade agreements typically stagnates around 60-70% need to be able 

to examine these barriers at the most detailed perspective, ideally at the 

importer*exporter*product level (see also Nilsson, 2022). In fact, there are various applications 

from international trade where research arguably stagnates due to the lack of matched importer-

exporter data. This case study would be a first attempt to match these data using PPT. If 

successful, it might serve as a template for other NSOs. 

13. Figure 2.1 shows a simplified view of the micro-data in possession of both Statistics 

Netherlands and Statistics Canada. The white variables are common to both data sets, the green 

variables are only present on the import (in this case Canadian) side and the blue variable is 

only available on the export (i.e., Dutch) side. The different variables may be classified as 

identifiers (e.g., the exporter id) or analytical variables. An identifier is found on both data sets 

and may be used as a linkage variable. However, it typically has no analytical value. An 

identifier is further classified as a unique identifier or a quasi-identifier. As the name suggests, 

a unique identifier uniquely identifies each unit in the data set. However, a quasi-identifier may 



 

 
 

 8 

assign the same value of the identifier to many units in the data set. Additionally, a quasi-

identifier may have typos. For example, the exporter id is a quasi-identifier for a transaction 

because many transactions may be associated with the same exporter id. By contrast, an 

analytical variable is a variable of interest for the analysis, such as the date, the value, the 

preferential code, the exporter size or the importer size. It need not be on both data sets but 

may be also used as linkage variable if this is the case, such as the transaction date or the 

transaction value, which are quasi-identifiers. 

14. By linking the transactions of the two datasets, it is possible to compile the total value 

of Dutch exports into Canada by tariff type and exporter size and analyze how different kinds 

of Dutch exporters take advantage of CETA. However, the micro-data cannot be freely 

exchanged between the two NSOs because it is Sensitive Statistical Information (SSI). Thus, 

the two NSOs must find a way to combine their micro-data without revealing the size and 

identity of any Dutch exporter to StatCan, and without revealing the size and identity of any 

Canadian importer or the tariff applied to any transaction to CBS. A solution is to perform a 

private set intersection of the two data sets. 

StatCan table   CBS table 

      

Exporter id   Exporter id 

Product code   Product code 

Date   Date 

Value   Value 

Importer size   Exporter size 

Preferential code     

Figure 2.1: The transaction micro-data. 

 

2.2 Private set intersection 

15. Private set intersection methods have been developed for situations where two parties 

wish to privately determine the intersection of their data sets, without revealing any information 

about the units that are outside the intersection. Based on the intersection, some total may be 

computed, such as the coverage of one of the data sets (Dasylva and Zanussi, 2021), or some 

micro-data may be transferred to one party. When the two data sets have a common unique 

identifier, a simple idea is to hash this identifier and determine the intersection by comparing 

the two sets of hashed values. In general, the parties are assumed to be honest but curious. This 

means that they are expected to follow the protocol and seek any available information about 
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the other data set or party. Quite a few solutions have been proposed for implementing a private 

set intersection of which many have been described by Kamara et al. (2014). These solutions 

involve two or three parties. A three-party solution includes a trusted third party, which does 

the linkage, beyond the two data-holding parties. Additionally, the linker may transfer some 

micro-data on the intersection units to one of the other parties. However, this requires a perfect 

linkage of the two data sets. 

2.3 Implemented protocol 

16. The implemented PSI protocol is described by Bruno et al. (2021). It is based on the 

protocol by De Cristofaro and Tsudik (2010) and comprises three steps. In the first step, the 

two data-holding parties exchange the protocol and encryption parameters. In this step, they 

also determine the intersection of the two data sets by exchanging the hashed and encrypted 

values of the identifier for their respective data sets. In the second step, each party sends the 

micro-data from the intersection to the linker, including the analytical variables. This micro-

data is encrypted and comprises the micro-data of each unit that is in the intersection. It is used 

to compute the totals of interest. In the third step, one data-holding party sends a query to have 

a total computed by the linker. The linker computes the requested total and replies to the party. 

The solution is based on the availability of a unique identifier and exact comparisons of the 

hashed values of this identifier. A quasi-identifier may be used but this has important 

implications that are discussed in the next section. As mentioned before, the linker computes 

an aggregate on the intersection based on the analytical variables. The linker may perturb these 

outputs, e.g., with differential privacy techniques, to make them safe.  

17. The code is available on Github at https://github.com/UNECE/Input-Privacy-

Preserving-Project. 

 
Figure 2.2: The PSI protocol. 

 

https://github.com/UNECE/Input-Privacy-Preserving-Project
https://github.com/UNECE/Input-Privacy-Preserving-Project
https://github.com/UNECE/Input-Privacy-Preserving-Project
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2.4 Private set intersection with a quasi-identifier 

18. When there is no unique identifier, it is possible to use a quasi-identifier that is based 

on a combination of attributes such as the exporter id, product code, transaction date and 

transaction value. However, this may lead to linkage errors because a quasi-identifier is not 

unique, unlike a business number that is expressly designed to uniquely identify businesses and 

has no analytical value. Also, a quasi-identifier is possibly recorded with typos or spelling 

variations. For example, the same international trade transaction may be recorded with a 

different date or value by two countries. The linkage errors include false negatives and false 

positives, where a false negative is not linking records from the same unit and a false positive 

is linking records from different units. From the private set intersection perspective, these errors 

lead to a trade-off between omitting to include a unit that is indeed in the intersection, or 

erroneously including a unit in this intersection. They are also a potential source of bias, when 

computing the totals of interest. The issue may be addressed by performing approximate record 

comparisons, estimating the linkage accuracy and adjusting the computed totals according to 

the reported accuracy. 

19. In general, it is challenging to perform an approximate comparison of encrypted 

records. One solution is based on using Bloom filters, which encode strings into a long 

sequence of bits (e.g., 1,000 bits) such that it is computationally infeasible to map the bit 

sequence back to the input strings. In a basic Bloom filter, all the bits are initially set to 0. To 

encode a string, it is broken into n-grams, typically bigrams (i.e., n=2), which are visited in 

sequence from the beginning to the end of the string. Each n-gram is mapped to many bit 

positions by a set of hash functions (e.g., 20 such functions) and each selected bit position is 

flipped to 1 if it is not already flipped, otherwise, it is left unchanged, i.e., a bit is never flipped 

back to 0. The similarity of two Bloom filters may be measured with the Dice similarity that is 

based on the number of bit positions that are set to 1 in both filters. It is possible to use a 

separate Bloom filter for each linkage variable. However, for greater security, a record-level 

Bloom filter is preferred, which is built by mapping each linkage variable to a separate filter 

and integrating the resulting filters into a single bit string. Fully homomorphic encryption offers 

an alternative to Bloom filters that is more flexible but also more complex. However, both 

methods require significant changes to the PSI protocol. To avoid such changes, one can still 

perform exact comparisons at the expense of having a greater number of false negatives. 

 

  Linked Not linked 

Matched TP FN 

Unmatched FP TN 

Table 2.1: Confusion matrix 

 

20. Measuring the linkage accuracy is key because linkage errors may occur at the linker. 

To further discuss this accuracy, call a record pair matched if the records are from the same 

unit. Otherwise call it unmatched. Then a false negative is a matched pair that is not linked, 
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and a false positive is an unmatched pair that is linked. Also define a true positive as a matched 

pair that is linked and a true negative as an unmatched pair that is not linked. The four pair 

types are usually represented in a 2x2 table called confusion matrix, which is shown on Table 

2.1. 

21. The linkage accuracy is assessed with many measures including the recall, precision 

and false positive rate (FPR), where the recall is the proportion of matched pairs that are linked, 

the precision is the proportion of linked pairs that are matched, and the false positive rate is the 

proportion of unmatched pairs that are linked. Estimating these measures is a challenge with 

encrypted or hashed records because clerical reviews are impossible. Instead, one must use one 

of many proposed statistical models by Fellegi and Sunter (1969), Thibaudeau (1993), 

Armstrong and Mayda (1993), Winkler (1993), Belin and Rubin (1995), Blakely and Salmond 

(2002), Daggy et al. (2013), Dasylva and Goussanou (2022) or others. The models from 

Blakely and Salmond (2002) and Dasylva and Goussou (2022) are quite convenient because 

they make no assumption about the dependence of the linkage variables. They apply when 

linking two duplicate-free data sets where one data set is contained in the other and the decision 

to link two records involves no other record. The solution by Dasylva and Goussanou (2022) 

has the additional advantage of accounting for the records heterogeneity. 

22. At the linker, a total may be estimated by simply taking the corresponding total over 

the linked pairs. However, this yields a naïve estimator that is biased, because it ignores the 

linkage errors. When the probability of a true positive and that of a false positive do not depend 

on the analytical variables, the bias may be removed by using the following estimator: 

 

23. This coincides with the naïve estimator if the linkage is perfect, i.e., if 𝑟𝑒𝑐𝑎𝑙𝑙 = 1.0 

and 𝐹𝑃𝑅 = 0.0. This estimator also corresponds to reweighting the links when there are no 

false positives, i.e., 𝐹𝑃𝑅 = 0.0. Of course, with large files, it is challenging to compute the 

total over the Cartesian product. Instead, one may replace this total by a total over the pairs that 

agree on blocking keys. Such keys are commonly used with the probabilistic method of record 

linkage, where they serve to select a small subset of the Cartesian product that includes most if 

not all matched pairs. A pair is deemed to have a non-negligible probability of being matched 

if the records agree on at least one blocking key. Blocking keys are usually based on quasi-

identifiers that have few typos and stable values over time. Call a pair blocked if it is selected 

by at least one blocking key and let the blocking FPR be the proportion of unmatched pairs that 

are blocked. Now suppose that each matched pair is blocked, and that the same assumption 

holds regarding the relation between the analytical variables and the true and false positive 

probabilities. Then one may use the following bias-corrected estimator. 

 

24. It is easy to see that it coincides with the first bias-corrected estimator if no blocking 

keys are used, i.e., every pair is blocked and 𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝐹𝑃𝑅 = 1.0. Lahiri and Larsen (2005), 



 

 
 

 12 

Chambers and Kim (2018), Dasylva (2018) have described other error adjustment methods, 

with a focus on fitting a parametric statistical model. 

25. When each transaction is recorded in both data sets with typos, the private set 

intersection may be based on modifying the PSI protocol to incorporate the model-based 

estimation of the linkage accuracy and the adjustment, as described above. In the following 

section the performance of this solution is evaluated through simulations in R. 

2.5 Evaluation 

26. The implemented PSI protocol is evaluated with synthetic international trade micro-

data. Additionally, simulations are conducted to evaluate the described solution components 

when there are typos, including the use of approximate comparisons with Bloom filters, the 

model-based estimation of the linkage accuracy, and the adjustment to remove the bias caused 

by the linkage errors. 

27. Synthetic micro-data: It is based on 100K transactions, where each transaction is 

associated with an (Dutch) exporter id, an exporter firm size indicator (small or large sized 

firm), an importer size indicator, a product code (according to the 6 digits harmonized system), 

a date, a value and a preferential code indicating whether the good was imported preferentially 

(code 300) or not (code 100). Each transaction is recorded in StatCan import micro-data and 

CBS export micro-data. StatCan import micro-data contains the vendor id, product code, date, 

value and the preferential code. CBS export micro-data contains the exporter id, exporter size, 

product code, date and value. The exporter id, product code, date and value may be used as 

linkage variables as they are available in both data sets. Initially, the micro-data is generated 

without typos such that each transaction is recorded with the same value for each linkage 

variable in each data set. In this case, the combination of the exporter id, product code, date 

and value, is unique in each data set. Table 2.2 shows the number of transactions by exporter 

size and tariff type in the micro-data with no typos. Then, the date and value of each transaction 

are perturbed in the CBS data set as follows. With probability 0.8, the date and value are left 

unchanged. Otherwise, the date is moved by a random number of days according to a normal 

distribution with mean 0 and standard deviation 20, while the transaction value is deflated at 

random with a mean of 15% and a standard deviation of 5%. 

 

Exporter size Tariff regime Number of transactions 

Small Non preferential 35,433 

  Preferential 11,923 

Large Non preferential 39,567 

  Preferential 13,077 

Table 2.2: Number of transactions by exporter size and tariff regime in the synthetic data. 

 

28. Analytical need: The goal is to privately link the two data sets to study how small Dutch 

exporters take advantage of CETA preferential tariffs into Canada. To this end, one may 

estimate the number of export transactions by tariff type for such exporters, with the described 

PSI protocols, without any modification of these protocols. One may also estimate the total 
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value of export transactions by tariff regime. In practice, computing this value requires 

homomorphic additions at the linker. However, this feature is mimicked in the simulations. 

29. Evaluating the PSI protocol: The implemented protocol is run on a single Windows 10 

virtual machine on the Microsoft Azure cloud. The same machine plays each role, including 

the two data holding parties (StatCan and CBS) and the linker. The synthetic data with no typos 

is used where the combination of the exporter id, product code, date and value, is unique and 

used as a linkage key. In the third protocol step, the CBS client sends a query to the linker to 

compute the number of transactions by exporter size and tariff type. The whole operation takes 

about 10 min. 

30. In the third protocol step, the CBS client sends a query to the linker to compute the 

same frequencies. The obtained output (at the CBS client) is shown on Table 2.3, where the 

estimated frequencies agree with the actual frequencies on Table 2.2. 

 

… 

QUERY MODE 

exp_size ; pref_kode ; IDKEY 

small ; 100 ; b'35433' 

small ; 300 ; b'11923' 

large ; 100 ; b'39567' 

large ; 300 ; b'13077' 

Table 2.3: Query response at the CBS client. 

 

31. The above results show that the protocol performs as expected. The execution time 

shows that the code can be optimized to handle a larger volume of transactions. 

32. Monte Carlo simulations: The simulations are conducted to further evaluate the 

methodology to account for the linkage errors. 

33. The Monte Carlo simulations comprise 100 repetitions. They are conducted by taking 

a subset of 10K transactions with typos from the 100K synthetic transactions. These 

transactions are then broken into 100 independent chunks, where each chunk comprises 100 

transactions and corresponds to a repetition. In a repetition, each related transaction is recorded 

on each data set (i.e., on the import micro-data and the export micro-data), the data sets are 

linked, the linkage errors are estimated, and the totals of interest are estimated. These totals 

include the number of transactions by small Dutch exporters, which had a value equal to or 

greater than 500K and benefited from the preferential tariff, and the total value of transactions 

by small Dutch exporters, which benefited from the preferential tariff. 

34. In the first scenario, the data sets are linked using the blocking key based on the 

concatenation of the exporter id and the product code and the linkage key based on the 

concatenation of the exporter id, product code, date and value, with an exact comparison of the 

linkage key. In the second scenario, the data sets are linked using the same blocking key and a 

record-level Bloom filter based on the exporter id, product code, date and value. Two records 

are linked if they have the same value of the blocking key and the Dice similarity of the Bloom 

filters is equal to or greater than a threshold, which is set to 0.8 or 0.9. For each scenario, the 

actual recall and false positive rate are compared to the model-based estimates. Also, for each 

total of interest (number of export transactions or total value exported), the actual value is 
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compared to the naïve estimate based on the links and the adjusted estimate, which accounts 

for the linkage errors. 

35. For the first scenario, the results appear on Tables 2.4-2.6, with three decimals of 

accuracy. They show that the linkage accuracy is accurately estimated with the model. For each 

total of interest, they also show that the adjusted estimator has a small bias while the naïve 

estimator has a large bias. 

36. For the second scenario, the results appear on Tables 2.7-2.9, again with three decimals 

of accuracy. They show that the linkage accuracy is accurately estimated with the model and 

that the adjusted estimator has a small bias for each total, as before. However, they also show 

that the bias of the naïve estimator is small when the recall is high. 

37. The comparison of the results for the two simulation scenarios shows that the adjusted 

estimator tends to have a smaller bias and a smaller variance when using the Bloom filters. 

This is expected because the Bloom filters enable finer approximate comparisons of the 

records. 

38. Overall, the obtained results demonstrate that the implemented protocol allows the 

private computation of a total over the intersection when the analytical variables are 

categorical, and the linkage variables have no typos and can be combined into a key that is 

unique. The simulation results show that it is still possible to accurately estimate the total by 

performing exact comparisons when there are typos, so long as one estimates the linkage 

accuracy and adjusts the naïve estimator to remove the bias. They also show that the naïve 

estimator may be used when the recall is high. Using Bloom filters does provide an advantage 

over exact comparisons, when it comes to the bias and variance of the adjusted estimator. 

However, it requires substantial changes to the protocol. Important changes are also required 

if one is to perform more sophisticated approximate comparisons through homomorphic 

encryption, to estimate totals based on quantitative analytical variables or to fit a statistical 

model. 

Measure Estimator Mean Standard error 

Recall Actual 0.8 0.038 

  Estimate 0.8 0.038 

FPR Actual 0.0 0.0 

  Estimate 0.0 0.0 

Table 2.4: Rates of linkage error in the first simulation scenario. 
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Estimator Mean Standard error 

Actual 6.370 2.116 

Naïve 5.320 2.000 

Adjusted 6.680 2.530 

Table 2.5: Number of export transactions with a value equal to or greater than 500K and a 

preferential tariff, by small Dutch exporters, in the first simulation scenario. 

 

 

 

Estimator Mean (M) Standard error (M) 

Actual 6.260 1.697 

Naïve 5.214 1.585 

Adjusted 6.514 1.952 

Table 2.6: Total value of export transactions with a preferential tariff by small Dutch 

exporters, in the first simulation scenario. 

 

 

Dice similarity Measure Estimator Mean Standard error 

0.9 Recall Actual 0.796 0.042 

    Estimate 0.796 0.042 

  FPR Actual 0.0 0.0 

    Estimate 0.0 0.0 

0.8 Recall Actual 0.949 0.020 

    Estimate 0.949 0.020 

  FPR Actual 0.0 0.0 

    Estimate 0.0 0.0 

Table 2.7: Rates of linkage error in the second simulation scenario. 
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Dice similarity Estimator Mean Standard error 

0.9 Actual 6.310 2.187 

  Naïve 5.190 2.083 

  Adjusted 6.481 2.634 

0.8 Naïve 5.960 2.183 

  Adjusted 6.266 2.303 

Table 2.8: Number of export transactions with a value equal to or greater than 500K and a 

preferential tariff, by small Dutch exporters, in the second simulation scenario. 

 

 

Dice similarity Estimator Mean (M) Standard error (M) 

0.9 Actual 6.231 1.705 

  Naïve 5.023 1.665 

  Adjusted 6.310 2.066 

0.8 Naïve 5.977 1.722 

  Adjusted 6.293 1.785 

Table 2.9: Total value of export transactions with a preferential tariff by small Dutch 

exporters, in the second simulation scenario. 

2.6 Lessons learnt 

39. The first lesson is that private set intersection technologies are promising but require 

more work. For example, the described protocol may be used to study certain bilateral trade 

asymmetries, when each transaction is recorded by each trading partner and the analytical 

variables are categorical. However more work is required if the data sets overlap partially, the 

analytical variables are quantitative or if fitting a statistical model. 

40. The second lesson is that there are many technological components, but no complete 

solution integrates all the required features, which include the verification of inputs (to only 

accept legitimate inputs), the verification of outputs (to only permit legitimate computations), 

private inputs (e.g., through encryption), safe outputs (to protect against inferential disclosure) 

and flow governance, where the latter refers to policies and procedures to control who can use 

the Privacy Enhancing Technology infrastructure. In general, this last component is lacking, 

which makes it difficult to provide evidence that the environment is safe, and the privacy 

guaranteed. 

41. The third lesson is that the main obstacles are not technological. Indeed, cybersecurity 

concerns are currently preventing a joint test of the protocol over the Internet. There are also 

legal concerns, which prevent the transmission of encrypted micro-data from a statistical 

agency to an external party, since encryption is not considered sufficient for de-identification 
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from a legal standpoint. Finally, there is a need for a dedicated IT infrastructure to further test 

PETs. 

42. The last lesson is that collaboration and teamwork are key. Both objectives are best met 

by building multidisciplinary teams with subject matter specialists, methodologists, computer 

scientists and legal experts. It is also important to pool the resources, e.g., with a solution for 

multi-party computation as a service. 

2.7 Potential next steps 

43. In the future, the protocol must be evaluated further by performing a joint test over the 

Internet, with StatCan and CBS as the data holding parties and Istat (or another organization, 

e.g., the UN PET Lab) as the linker. It must also be modified to incorporate the proposed 

features to deal with typos, including the estimation of the linkage accuracy and the adjustment 

of the estimated totals. For a first step in this direction, see Dasylva (2022). Beyond these 

solutions, one must evaluate other approaches that only involve two parties without trust, such 

as those based on multi-party computation or garbled circuits. This goal can be met by 

leveraging the UN PET lab infrastructure, where many state-of-art solutions are implemented. 

44. Another avenue for further exploration is how to do more advanced analyses on the 

matched dataset. Instead of descriptive statistics, there is a demand for academic econometric 

analysis on such linked datasets, which comes with further requirements to the protocol. 
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Chapter 3 - Track 2: Private machine learning 

3.1 Privacy-Preserving Federated Machine Learning 

45. In the following, we describe the works and results for the previous phase of the Private 

Machine Learning (PML) track. The goal was to test different approaches of Federated 

Learning (FL) using open and public accelerometer data. The scope of this phase is to 

Investigate best practices and open source tools for distributed and collaborative Machine 

Learning (ML) training among multiple organizations in a low trust environment whilst 

mutually benefitting from the outcomes (the final model) or allowing safe 3rd party access. 

46. In the experiments, multiple National Statistical Organizations (NSOs) from Canada 

(StatCan), Netherlands (CBS), Italy (Istat) and UK (ONS) took part in building a simulated 

environment to validate the concept of multi-party privacy preserving ML (PPML) for both 

training and inference. A distributed and containerized PPML architecture was built, utilizing 

FL in combination with other privacy enhancing techniques, such as additive homomorphic 

encryption (HE), to train a neural network model on isolated lifestyle data collected by smart 

and wearable devices. 

 

3.1.1 Methodology 

 

47. A simulated environment was created by using open source tools and libraries to 

recognize and classify human activities into multiple categories based on publicly available 

accelerometer data collected from smart and wearable devices (Reyes-Ortiz, et al.). To this end, 

we split the data into 4 different chunks each one to be privately held by each participating 

NSO (StatCan, ONS, Istat, and CBS). Each chunk is split on train and validation datasets. The 

assumption is that neither NSO has access to others' data but each one wants to collaboratively 

train a classification model for activity recognition. Each NSO can train a classification model, 

e.g. a multilayer perceptron (MLP) locally with its local data. An additional assumption is that 

a Central Authority (CA)1 exists and contributes by averaging the locally trained models 

(weights) by each NSO (see fig. 3.1). 

48. In detail, we used: 

- Flower library to set up the clients (NSOs) and the CA for the FL setting. 

- PyTorch to train and validate the MLP model. 

- Numpy library for serialization/deserialization of the weights and tensor manipulations. 

- Python-Paillier library for additive HE. 

- Matplotlib for plotting the results. 

- Pandas library for data wrangling. 

- Python-Click library for command line interface. 

 

 

 
1
 NSO/client and CA/server are indistinctly used. 

https://github.com/adap/flower
https://pytorch.org/
https://numpy.org/
https://github.com/data61/python-paillier
https://matplotlib.org/stable/index.html
https://github.com/pandas-dev/pandas
https://github.com/pallets/click
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Figure 3.1: An overview of a distributed privacy preserving machine learning involving four 

National Statistical Organizations (NSOs) and a Central Authority (CA). A combination of 

Federated Learning and additive Homomorphic Encryption is used to train a neural network 

to classify human activities based on publicly available accelerometer data collected from 

smart devices. 

 
3.1.2 Experiments 

 

49. The data is about Human activity recognition using smart devices’ accelerometer and 

gyroscope data, after pre-processing. The goal is to classify the data into 6 classes: WALKING, 

WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING. A 

local neural network (MLP with linear layers and ReLU activations) is used for the purpose of 

classification. 

50. Four scenarios with incremental difficulty to implement were studied. The main 

characteristics are summarized in table 3.1. 

51. By default the Flower library allows one client to send the initial weights (thus the 

architecture of the model) to the server (CA). This was the case in scenarios 1, 2, and 4. Then 

we performed custom implementations to allow the CA to set up the architecture and initial 

weights. In this way, the learning process is controlled by the CA (scenario 3). 
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Scenario Clients Data FL Aggregation Strategy Notes 

1 2 NSOs Same data FedAvg (MacMahan et 
al.) 

Initial model and 
hyperparameter are sent by one 
NSO to the CA. 

2 4 NSOs Split (in 
different 
chunks) 

FedAvg Saved aggregated model and 
validation. 

3 4 NSOs Split FedAvg Initial model and 
hyperparameters are sent by 
the CA. 

4 4 NSOs Split Encrypted FedAvg Initial model and 
hyperparameters are sent by 
one NSO.  

Table 3.1: Implemented Federated Learning Scenarios 

 
52. The vanilla implementation for the aggregation of models is called FedAvg (MacMahan 

et al., 2017). Once the CA receives all the trained models, it simply averages the weights and 

sends back the updates to the clients for additional rounds of training. 

53. A more interesting case is scenario 4, where each NSOs holds a common set of private 

and public keys2 set using the Paillier cryptosystem (Paillier, 1999). This public key 

cryptosystem is homomorphically additive, that means that given ciphertexts ct1, ct2, …, ctn, 

we can compute ct = ct1 + ct2 + … ctn and if we decrypt ct using the private key we will get 

the result of the sum of the plaintexts corresponding to each ciphertext. Then using Paillier HE, 

the CA which only holds the public key can easily compute the average of the weights without 

knowing anything about the plaintext weights, the motivation is to add an additional layer of 

privacy. Beyond Paillier HE, we implemented the serialization of the ciphertexts to be ready 

to be sent over the internet without losing its meaning. In that way, clients and the CA can 

deserialize, use and manipulate the ciphertexts. It is important to note that each NSO can 

decrypt the model and train locally on the clear, so NSOs perform encryption/decryption and 

the CA performs the addition homomorphically on ciphertexts. Another remark is that the final 

encrypted model was sent to each NSO to perform the validation. 

3.1.3 Results 

54. Each NSO holds its own train and test datasets. Local training is performed with the 

train dataset in the clear and after attaining a certain number of epochs the local encrypted 

model weights are sent to the CA in serialized form. Then, when all the encrypted weights are 

received, the CA deserializes them and performs the average to obtain the averaged encrypted 

weights (see fig. 3.1). Finally, these weights are sent to each NSO that decrypts them and 

 

 
2
 Key exchange is possible on a cryptographic key management system (CKMS). We assume that the keys were 

already shared, thus considering a CKMS is out of scope for this project. 
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computes the accuracy and the loss using the test dataset. All this process is called a round of 

training. 

55. In figure 3.2, we show plots for test accuracy and loss by round for each NSO. For this 

case, after 25 rounds the training is stopped. Plots indicate that the model accuracy is increasing 

(and loss is decreasing), thus we achieved our goal of training a model using FL. 

 

Figure 3.2: Test accuracy and loss for each NSO vs number of rounds of training 

 
56. Two kinds of experiments were performed, a local test where all the clients and the CA 

reside on the same computer. A network test where all the clients ran on computers located in 

each country and the CA ran in the Amazon Web Services cloud. 

57. More results and details of this project can be found at the following URL: 

https://unece.org/sites/default/files/2021-

11/Saeid%20Molladavoudi_Private%20machine%20learning.pdf  

3.1.4 Conclusions 

 

58. This experiment had a simplified scope and was performed in a simulated environment. 

We were able to train a model for activity recognition under a FL setting. To this end, we 

considered different scenarios with increasing levels of customization. For the last experiment, 

we implemented serialization and deserialization of Paillier ciphertexts, and the encrypted 

averaged weights computation. It is worth noting that the results from scenarios 2 and 4 are 

https://unece.org/sites/default/files/2021-11/Saeid%20Molladavoudi_Private%20machine%20learning.pdf
https://unece.org/sites/default/files/2021-11/Saeid%20Molladavoudi_Private%20machine%20learning.pdf


 

 
 

 22 

practically equivalent with the difference on the runtime overhead given by the 

encryption/decryption and serialization/deserialization processes3. 

59. This work can be extended by applying different aggregation strategies, models, and by 

using other frameworks for FL. Differential privacy can be added to help with the output 

privacy. Finally, we did not perform hyperparameter optimization for the initial model and 

architecture. 

3.2 Defending Against Membership Inference Attacks with Differential 

Privacy on a Linked Dataset 

60. We assume a scenario in which a NSO wants to offer a Privacy Enhancing Technique 

(PET)-based remote analytics service, e.g. a predictive model trained on its own internal data. 

The service could be used by another party (public, private or another NSO) that needs to use 

NSO’s private data while maintaining the appropriate privacy requirements. The consuming 

party may also use their own confidential data alongside the NSO’s data. 

61. More specifically, in our use case, a university wants to infer whether a student will 

pass or fail using demographic data owned by the NSO alongside their private data. This allows 

the university to predict how to prepare for the coming years (number of classrooms to prepare, 

number of professors, etc.). The university hasn't access to the sensitive socio-demographic 

data. Only by using PETs can the university have access to this analytical output. The goal is 

to build a private ML model using the linked data, or a synthetic representation, to analyze the 

impact of PETs when used to protect the ML model from various attacks and the training data 

from being identified or reconstructed. 

62. Note that this use case does not follow responsible ML principles and it is meant to 

analyze the impact of differential privacy (DP) and various ML attacks. The results can be 

translated to similar use cases in which responsible ML principles are followed. Each of these 

results can also be further optimized to improve the overall results. 

63. In this use case we have two datasets: a Portuguese university’s student performance 

dataset for Mathematics; and a NSO’s demographic one; they have a common anonymized key 

that allows training a predictive model with the use of PETs. The linked dataset contained a 

total of 395 samples. We focused our work on model attacks and not on the datasets so we 

assumed that such linkage between the datasets already exists. The university wants to train a 

private ML model using data owned by the other party (NSO); the goal is to train a predictive 

model in a privacy preserving manner with the aim to provide an inferential model as output. 

We assume there is a partial trust relationship between the two parties (Honest but Curious 

scenario). 

64. We have worked on a specific attack model named membership inference and on its 

mitigation methods during ML training and/or to inputs. Finally, we made the following 

assumptions:  

● the dataset linked for training is secure and cannot be accessed  

 

 
3
 Since the weights are bundled in an array of arrays (or tensors) each one corresponding to a layer of the MLP, 

we experimented encrypting all these layers or just the output layer to speed up the computation. 
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● the ML model is partially accessible with unrestricted access to queries  

● relevant attacks are membership inference, model reconstruction and data linkage. 

 

3.2.1 Scenario 1 - Differentially Private Data and Differentially Private Training 

 

65. In this section we address the question of the relative efficiency of different methods 

for applying DP, by comparing the predictive performance of two methods with the same 

privacy budget. We consider two approaches to achieving (ε,δ)-Differential Privacy in the 

following outputs: 

● Using non-privatized data, but applying an (ε,δ)-DP optimization method to the model 

● Creating (ε,δ)-DP synthetic data and then applying a classical (non-private) model 

 

66. The post-processing Theorem of Differential Privacy ensures that the same privacy 

guarantee will hold, but we anticipate accuracy will vary. 

3.2.1.1 Framework 

67. Using the Portuguese Mathematics dataset with 395 samples, the task was to predict a 

binarized test score from all other variables in the dataset (58 features including binary 

dummies derived from categorical variables). The binary target variable was derived by 

splitting an integer test score at a threshold value. The base rate and mean of the target variable 

was approximately 0.67. We use the same feed-forward neural network (NN) for each method. 

The network has three hidden layers with 40, 60 and 20 nodes, respectively and Rectified 

Linear Unit (ReLU) activations for each layer (see figure 3.3). 

 

Figure 3.3: Neural network design used for testing 

 

68. The first experiment uses the original dataset, but applies noise to the optimisation of 

the model, ensuring that the fitted model cannot have memorized too much information from 

any single row of the data. This is achieved using the Differentially Private Stochastic Gradient 
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Descent (DP-SGD) algorithm (Abadi et al., 2016) implemented as part of the `tensorflow-

privacy` package4 (Abadi et al., 2015). 

69. The second experiment replaces the original data with a synthetic dataset that has been 

synthesized by a differentially-private algorithm. In this experiment we use MST (McKenna et 

al., 2021), which won the 2018 NIST DP Challenge. The MST synthesis method discretises 

each variable of the original data into a number of bins (set by the researcher), and then 

estimates multivariate histograms of the most important data margins with appropriate noise 

added to ensure the mechanism satisfies DP, before reconstructing a synthesized dataset from 

the noisy histograms. 

70. The main evaluation metric for the two methods is the validation-set predictive 

accuracy. One fifth of the data is set aside for validation, while the other four fifths are used 

for training the model in each experiment. 

3.2.1.2 Results 

Experiment 1: Original data with DP-SGD training 

71. In this experiment we used the original data. The DP was applied to the optimisation of 

the NN model. We varied ε ∈ {1,10,1000,106}. Table 3.2 shows that the validation set accuracy 

achieved by the ‘vanilla’, non-DP algorithm was 90%. When ε was set to a very high value, 

the DP-SGD algorithm achieved a validation-set accuracy of 84%. However, for smaller ε 

values the accuracy achieved was worse than randomly guessing the value of the binary target 

variable. 

72. Table 3.2 also shows the training-set accuracy for ε ≤ 1000 was worse than random 

guessing; in practical settings users are normally advised to use values of ε on the scale 1 - 10. 

This suggests that, rather than fitting the model in a way that failed to generalize, the algorithm 

failed to train the model at all. The trace plots in Figure 3.4 confirm that the predictive accuracy 

of the model did not improve with each epoch, on the training set or the validation set. 

 

Accuracy Training Validation 

DP 𝜖 = 1 0.54 0.47 

DP 𝜖 = 10 0.59 0.65 

DP 𝜖 = 1,000 0.56 0.52 

DP 𝜖 = 106 1.00 0.84 

Non DP 1.00 0.90 

Base rate 0.67 0.67 

Table 3.2: Accuracy comparison when training with DP-SGD and various ε values 

 

 
4
 TensorFlow Privacy | Responsible AI Toolkit 

https://www.tensorflow.org/responsible_ai/privacy/guide
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Figure 3.4: Accuracy plots when training with DP-SGD and various ε values 

 

Experiment 2: DP Synthesised Data with non-DP training 

73. In this experiment we created (ε,δ)-DP synthetic data, and trained the NN without DP. 

We varied ε ∈ {1, 10, 1000}. 

74. The dataset is synthesized three times: with 1, 10, and 1000 ε budget, respectively. The 

quality of the synthetic data on univariate margins (ε=1) was reasonably high (figure 3.5). 

However the synthesizer struggled to accurately estimate correlations with lower ε (figure 3.6). 

 

Figure 3.5: Synthetic data quality on univariate margins 
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Figure 3.6: Synthetic data correlations with lower ε values 

 

75. Table 3.3 exhibits that the validation-set accuracy on both the original data, and the 

dataset with ε = 1000 were close. The accuracy achieved by the ‘vanilla’ model was 87%, 

whereas the accuracy achieved by the synthetic data was 84%. For ε ∈ {10,1}, however, the 

validation-set accuracy was lower than random guessing on the original data. This is shown in 

Figure 3.7, where the horizontal black line is the accuracy achieved by random guessing on the 

original data. 

Accuracy Training Validation Original data 

DP 𝜖 = 1 1.00 0.52 0.60 

DP 𝜖 = 10 1.00 0.68 0.67 

DP 𝜖 = 1,000 1.00 0.84 0.77 

Original data 1.00 0.87 NA 

Base rate 0.67 0.67 0.67 

Table 3.3: Accuracy comparison when training with differentially private input data 
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Figure 3.7: Accuracy plots when training with differentially private input data 

 

76. The TensorFlow model was fitted to each of the three synthetic datasets and to the 

original data. The model fitted to the synthetic data seems to perform reasonably on real data 

when ε is high.  

3.2.1.3 Conclusions 

77. For this particular task, neither approach (DP-model, or DP-data) produced performant 

models at values of ε that would be viable for real-world applications. 

78. This limitation is likely at least in part due to the small size of the data set - on which 

we might not expect deep learning to be effective. Future experiments could seek to replicate 

this experiment on data sets at larger scales. 

79. For DP-synthetic data, correlation plots indicate the algorithm failed to retain 

relationships between key independent variables and the target variable. This supports findings 

of the ONS/Alan Turing Institute (Houssieau et al., 2022)5 that unsupervised synthetic data 

generators can fail to retain key relationships. This can be mitigated by creating synthetic data 

sets that are supervised to retain particular relationships. Future work could look at how much 

performance gain can be achieved by curating synthetic data specifically for the prediction task 

at hand. Other investigations into DP have not been considered within the scope of this work, 

such as residual privacy risks with synthetic data generated with DP, but these can be explored 

in future works. 

3.2.2 Scenario 2 - Investigation of Membership Inference Attacks 

 

80. Within the HLG-UNECE PML Track 2 project, we addressed the output privacy issues 

that arise when a trained ML model is distributed in some way or is deployed.  

81. Research on these topics is important; the increased use of ML applications distributed 

on cloud services and the tendency to share trained models have made it easier for attackers to 

compromise the privacy of the models. Furthermore, with the increasingly pervasive use of 

 

 
5
 [2211.06550] TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data (arxiv.org) 

https://arxiv.org/abs/2211.06550
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Internet of Things (IoT) devices where ML algorithms are often embedded in these devices, it 

is more important than ever to protect the data used to train these models. This has led to 

growing concerns about the possibility of these attacks compromising the privacy of people 

whose data is used in the training process. 

82. Among the different privacy attacks which target the outputs of a trained ML model, 

we can mention: 

● Model inversion attacks use a ML model to infer sensitive information about its training 

data. The basic idea is to use model predictions to reverse engineer the original training 

data. In particular, the attack aims to estimate some sensitive characteristics of the 

inputs. 

● Membership inference attacks (MIAs) are a type of security attack that aims to 

determine whether data from a specific individual has been used to train a ML model 

or not. In this use case we addressed the MIA type. 

83. A MIA allows an adversary to query a trained ML model to predict whether or not a 

particular sample was in the model's training dataset. In practice, given a trained ML model 

and some data point, an MIA decides whether this sample was part of the model’s training set. 

 

  
https://fraboeni.github.io/files/2021-01-24-membership-inference/pic1-membership-inference.png 

Figure 3.8: Identifying individual samples from the training set 

 
84. MIAs can be used to violate individual privacy; for example, imagine you are in a 

clinical context; you may have a ML model to predict an adequate medical treatment for cancer 

patients. This model, naturally, needs to be trained on the data of cancer patients. Hence, given 

a datapoint, if you are able to determine that it was indeed part of the model’s training data, 

you will know that the corresponding patient must have cancer. 

85. Most MIAs work by building a binary meta-classifier Fattack which, given a model F 

and a data point xi decides whether or not xi was part of model training sample X. 

 

 
https://fraboeni.github.io/files/2021-01-24-membership-inference/pic2-meta-classifier.png 

Figure 3.9: An example of what a MIA attempts to learn 
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86. To train the binary meta-classifier, shadow models are built that imitate the behavior of 

the original ML model. Shadow models use training datasets known to the attacker or that are 

generated by the attacker. By exploiting the knowledge of the input and output data of the 

shadow models, the binary meta-classifier is trained. 

87. There are several tools to implement MIAs such as IBM-ART framework6 and 

TensorFlow Privacy’s Membership Inference7, moreover implementations can also be custom-

built following the designs from research papers. In this specific use case we applied 

TensorFlow Privacy to our dataset to simulate MIAs to our predictive model. 

88. Within this scenario we test the efficiency of MIAs and how DP can protect against the 

attacks. Furthermore, we explore how overfitting affects the performance of MIAs. 

3.2.2.1 Results 

 
89. The results of the scenario above are presented in the following figure that shows the 

trade-off evaluation between accuracy and utility (privacy preservation) for some dimensions. 

The overall performance of the MIA is also compared to when various privacy budgets are 

utilized. 

 

 
Figure 3.10: Trade-off between accuracy and utility with DP and MIAs 

 
90. In the table within figure 3.10, the following three groups of values are presented as 

they are utilized by the TensorFlow Privacy library: parameters, scores of predictive model and 

effectiveness of the attack. The first group, in the first three columns, includes the number of 

epochs used for training, the noise multiplier and the learning rate values used to train the 

model. These will be discussed below. In the second group (columns 4, 5, 6, and 7) the scores 

of the training set, validation set and test set are presented alongside the ε values used. In the 

last group (columns 8, 9, 10, and 11) there are some metrics related with the effectiveness of 

 

 
6
 https://github.com/Trusted-AI/adversarial-robustness-toolbox 

7
 

https://github.com/tensorflow/privacy/tree/master/tensorflow_privacy/privacy/privacy_tests/membership_infere

nce_attack 
 

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/tensorflow/privacy/tree/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack
https://github.com/tensorflow/privacy/tree/master/tensorflow_privacy/privacy/privacy_tests/membership_inference_attack
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the attack: the type of attack utilized, the area under the curve (AUC) values, the attack 

advantage value and the portion of the dataset on which the attack has been performed. 

91. The bottom of the figure 3.10 displays four different plots to highlight the results. The 

first, on the left, shows the relationship between the noise_mulitplier and the ε (eps). The 

noise_multiplier is the amount of noise fed into the original model (the one that predicts if a 

student passes or fails) during the training phase, to preserve the privacy of the model input 

data. Eps is the privacy budget: the lower ε is, the more noise is injected during the training. 

The second plot shows the performance on the test set, i.e. the measure of accuracy of the 

trained model on unseen data. It can be observed that the greater the noise entered into the 

training of the model, the lower the testing score. In the third and fourth plots we measure the 

performance of MIAs. We consider two evaluation metrics: get_auc (area under the curve) and 

get_attacker advantage; the greater the “auc” the greater the effectiveness of the attack. The 

get_attacker_advantage measures how advantageous the attack is; the smaller the advantage of 

the attacker, the less effective the attacks will be. 

92. The vulnerability of a model to MIAs depends on a set of factors, including overfitting, 

classification problem complexity, in-class standard deviation and the type of the ML model 

targeted. We will look at an example of overfitting below to illustrate how models that do not 

fit the training data too tightly are less vulnerable. Overfitting occurs when the model cannot 

generalize well to unseen data and fits too closely to the training dataset; in this case we can 

observe a high difference between the validation score and the training score. 

 

 
Table 3.4: Example of how overfitting impacts the performance of MIAs  

 

93. When the original model, i.e. the model that classifies whether students pass or fail, is 

overfitted (see the first two rows of the table 3.4), there is an advantage for the attacker because 

the model fitted too closely to the training dataset. This makes it easier for the MIA to identify 

which samples have been used for training (see the get_attacker_advantage values). Instead, in 

the third row, where we have not detected overfitting, we observe that the 

get_advantage_attacker (which represents the effectiveness of the attack) decreases.  

94. In conclusion, to help protect against MIAs, it is important to utilize DP and to ensure 

that the model is not overfit during the training process. This can result in a decrease in 

performance, but reduces the effectiveness of MIAs to better protect the privacy of the training 

data. As with the majority of privacy work, a balance between the privacy needed and the target 

performance must be established based on how the model will be used. 

3.2.3 Scenario 3 - In-Depth Investigation of Membership Inference Attacks and 

Differential Privacy 

 

95. Following the investigations of DP applied during training, of DP applied to the input 

data, and of differentially private training against established MIAs, this final exploration will 

highlight the specific impacts DP can provide to defend against MIAs. Specifically, we have 
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programmed the specified MIA from a classic paper on the attack to observe the defenses 

provided by DP in more detail than what is output from the libraries used above (Shokri et al, 

2017). This helps identify key points in how DP can protect against MIAs, such as how well it 

protects training samples from being correctly identified for both class labels. 

3.2.3.1 Membership Inference Attack Implementation 

 

96. Following the implementation from its paper (Shokri et al, 2017), we have implemented 

the MIA as follows. First, we utilize the proposed model-based synthesis algorithm to generate 

synthetic datasets to use when training shadow models. This generates complete samples, with 

pass or fail class labels, by utilizing the probability outputs from the original model to 

determine when a synthetic sample is considered to likely be a member of the target class. The 

likelihood is determined by a set threshold chosen by the programmer. Shadow models are 

imitations of the original model which are trained with the synthesized datasets, where each 

shadow model receives a unique training and testing set. 

97. There will be k shadow models utilized, where the ith shadow model is designated by ki 

and a dataset attached to a shadow model ki is designated as dataset di. These k shadow models 

are initialized, trained with their corresponding training set, and tested with their corresponding 

test set (to ensure adequate predictive performance). For each of the k datasets used to train 

and test the k shadow models, each sample within the datasets is assigned a class label. A 

sample of dataset di is assigned a class label of 1 if that sample has been utilized to train the 

shadow model ki. Otherwise, a sample is assigned a class label of 0 (which denotes that it has 

been used for testing, but not for training). Then each labeled sample within the dataset di is 

input through shadow model ki to receive the appropriate prediction vector from the trained 

shadow model.  

98. With each synthetic sample now containing a class label of whether it has been used 

for training and with the pass/fail prediction vectors for each sample, the datasets are split into 

new unique datasets with only the prediction vectors as the features and the train/test class label 

as the class to predict (the original pass/fail class label is tracked but will be discarded 

afterwards). There will be one of these new datasets for each original class label (i.e. pass or 

fail). Hence, within the context of the work performed, each sample of each dataset di will be 

placed within either dpass if the sample is predicted to pass or dfail if the sample is predicted to 

fail. These two datasets will be used to train the final attack models, where there will be one 

attack model for each original class label. Attack model Φ0 represents the model which 

determines if samples of class 0 (i.e. a failing grade) have been used for training the target 

model and Φ1 represents the same, except for samples of class 1 (i.e. a passing grade). 

99. When trained, each attack model will learn how to distinguish the differences in 

prediction vectors such that it can determine whether a sample has been used for training. These 

attack models can then be applied on more synthetic data to determine the likelihood that the 

generated samples have been used to train the original model being attacked. This can result in 

the training set being reconstructed which is a clear privacy violation. 

3.2.3.2 Simulation Configuration and Results 

 

100. Through a Python program, the above attack is simulated and utilized against two ML 

models, one trained normally and the other trained with DP. The attack itself is not fully 

optimized within this simulation, however the selected attack parameters still provide sufficient 
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outputs to understand how differentially private training helps protect against the attack. To 

understand how effective the attack is against both models, the attack accuracies, attack 

precisions, attack recalls, and attack f1-scores are tracked for both attack models Φ0 and Φ1. 

Furthermore, the precision, recall, and f1-score values are output for both when the sample is 

actually part of the training set and when the sample is not a member of the original training 

set. 

101. These results are exhibited in table 3.5 for when the attack has been applied to a 

differentially private model Φdp with a privacy budget of 1.1 and when the attack has been 

applied to a non-differentially private model Φ with the same architecture as Φdp. Within the 

table, the run information of the model being attacked is first displayed. This highlights the 

accuracy, precision, and recall values of training the original models Φdp and Φ with the actual 

dataset. With this information, the effects of applying DP in the training can be observed. Note 

that sufficiently high performance is important since both models will be queried to generate 

the synthetic datasets for the attack. With a poor initial model, the synthetic data’s quality will 

suffer. 

102. The following columns highlight the actual performance of the attack, for both attack 

models Φ0 and Φ1. The attack accuracy represents the overall performance of how well each 

attack model can correctly determine if a sample is a member of the training set. A high attack 

accuracy is preferred when accompanied with higher precision, recall, and f1-score values. The 

attack precision columns denote how precise the predictions are for a given attack model. A 

higher value is best when the recall values are also sufficiently high. The attack recall columns 

display the percentage of correct predictions for whether data is or is not part of the training 

dataset. A higher recall value is good when matched with a sufficient precision value. Finally, 

the attack f1-score represents how well the attack balances its recall and precision values. The 

higher this value is, the better the attack is performing in general. Note that the original dataset 

used to train the initial models are run through the attack models and the results are compiled 

within table 3.5. 

 

 
Table 3.5: Membership Inference Attack Performance Comparison 
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103. Table 3.5 illustrates that the MIA performs worse on the target model when DP is used 

in the training process of the target model compared to when the target model is trained without 

DP. This is clear due to the overall metrics of the attack performing worse when DP is used. 

104. The model being attacked has its performance presented in the run information column. 

Here, the use of DP results in an overall improvement for each evaluation metric. Of note, the 

accuracy and precision values of Φdp have a moderate decrease when compared to the 

traditionally trained model Φ. By having worse performance, Φdp inherently provides some 

protection against the selected attack since the model synthesis approach utilized to obtain 

synthetic data will not generate as accurate samples compared to when Φ is attacked. 

105. When analyzing the attack accuracies of both attack models Φ0 and Φ1, DP reduces the 

attack’s accuracy in identifying training and non-training samples to a probability close to that 

of a coin flip. This is worse than not using DP, but what is most important to analyze is whether 

this means that the attack is unable to identify training samples, unable to identify non-training 

samples, or if it performs poorly at identifying both. The precision and recall values indicate 

that the use of DP in Φdp results in more samples being classified as not in the training set when 

compared to Φ. This is clear due to the large increase to the recall values for both pass and fail 

samples not in the training set and the corresponding low precision values. 

106. Without DP used, the recall values are more balanced, but the training set samples are 

more frequently and precisely identified. The f1-scores exhibit the same patterns, where the f1-

scores of identifying the training samples are much higher for the traditionally trained model 

Φ, especially for samples of class 0 (i.e. a failing grade). The non-training sample f1-scores are 

only moderately higher when DP is used. Overall, this indicates that more training samples are 

correctly identified without DP with a similar amount of non-training samples being precisely 

identified as when DP is used. 

107. One note is that the differentially private model Φdp is still being exploited by the attack 

despite the attack being less effective. In particular, the small amount of training data identified 

is being very accurately identified since the precision remains high for a small subset of 

samples. Although this is better than having more of the training set being identifiable, this still 

leaves room for concern depending on the sensitivity of the data. In practice this will require 

an analysis of the attack performance and optimizations to the privacy budget used to provide 

an appropriate defense against the attacks. However, these results clearly highlight how DP can 

be used to help defend against MIAs. 

3.2.4 Conclusions 

108. Preliminary results of our experiments in a simulated environment proves the feasibility 

of distributed and federated analytics among organizations while protecting the privacy of 

isolated data sources. We have built a community of Statistical Offices in the area of privacy-

enhancing technologies with links to open source community, industry and academia. 

Moreover, there is a direct link to sustainability, when it comes to collaboration among NSOs, 

namely novel ways of collaboration, driven by privacy requirements and technological 

constraints. However, in real scenarios, prior agreements among participating agencies on a 

standard data format and preprocessing steps on a case-by-case basis seem to be necessary 

before deployment of distributed ML on sensitive data.  
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Chapter 4 - Track 3: Open consultation 

4.1 Overview 

109. Through the series of technical discussions held during the project, the team reflected 

on the barriers and critical factors on the side of potential adopters that impede a wider adoption 

of Input Privacy Preservation (IPP) in statistical production as alternative to plain sharing of 

clear data. This triggered a wider reflection of possible strategies to promote faster adoption, 

leading the team to identify the pooling of scarce resources (human and financial) for the 

development of shared infrastructures for privacy-preserving computation, serving 

multiple organizations and supporting multiple use-cases, as a natural strategy to overcome 

many of the existing barriers. Based on such elaboration and building upon the initial impulse 

by Eurostat, the project team formulated the concept of a Multi-Party Secure Private 

Computing-as-a-Service (MPSPCaaS) infrastructure. A high-level outline of the MPSCPaaS 

concept is given in the following subsection. 

110. The team recognized that the detailed design and implementation of the MPSPCaaS 

concept would need to face a wide range of technical challenges and non-technical issues that 

may go beyond the skills and expertise of the project team. Furthermore, it was not obvious 

that such an innovative concept would be well received by external stakeholders, and especially 

by prospective adopters and developers outside the project team. Therefore, In order to ensure 

that nothing is missed, the project team decided to launch an informal and open consultation 

among experts and stakeholders. The consultation was mainly targeted at: 

• Privacy and security experts from both the technical and legal sides. 

• Potential users of the envisioned MPSPC infrastructure, including but not limited 

to statistical authorities, public bodies and private companies. 

• Digital activists and representatives of civil society (e.g., citizen associations). 

• Researchers and developers in relevant fields. 

111.  The consultation was prepared by Eurostat (as Chair of Track 3) in the form of an 

online questionnaire on the EUSurvey platform made freely available by the European 

Commission. A short document (5 pages) was prepared and released publicly on the project 

website of the project to (i) explain the motivations and goals of the consultation; (ii) present 

the basic elements of the MPSPCaaS concept; and (iii) formulate a set of eight specific 

questions (plus one additional field open for free comments). Email invitations were sent to 

individual experts and organizations with the plea to forward the invitation further in their 

professional networks. The consultation was open on 15th October 2022. The response deadline 

was set initially to 30th November and later extended to 15th January 2023. Access to the 

response link required an EU Login account. The response field for each question allowed up 

to 4000 characters of free text. During this period a total of 20 responses were received. The 

analysis of the responses was analyzed and the key insight and points made by the respondents 

are summarized below in a dedicated subsection. 

 

https://ec.europa.eu/eusurvey/home/welcome
https://ec.europa.eu/eusurvey/home/welcome
https://ec.europa.eu/eurostat/cros/sites/default/files/mpspcaas_open_consultation_unece_hlgmos_2022_v2.pdf
https://ec.europa.eu/eurostat/cros/sites/default/files/mpspcaas_open_consultation_unece_hlgmos_2022_v2.pdf
https://statswiki.unece.org/display/IPP/Input+Privacy-Preservation+for+Official+Statistics+Home
https://statswiki.unece.org/display/IPP/Input+Privacy-Preservation+for+Official+Statistics+Home
https://statswiki.unece.org/display/IPP/Input+Privacy-Preservation+for+Official+Statistics+Home
https://ec.europa.eu/eusurvey/runner/MPSPCaaS2022
https://ec.europa.eu/eusurvey/runner/MPSPCaaS2022
https://ec.europa.eu/eusurvey/runner/MPSPCaaS2022
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Figure 4.1 - Screenshots of the online questionnaire  

 

4.2 Multi-Party Secure Private Computing-as-a-Service concept 

112. The traditional model of statistical production assumes that a single organization, 

namely the statistical authority, collects the whole input data and from there computes the 

desired output information, i.e., the final statistics, according to some data analysis 

methodology. Whenever the desired output information requires the integration/combination 

of different input data sets held by different organizations, the traditional solution is to arrange 

for an exchange of input data, either directly between the concerned institutions or with a 

Trusted Third Party (TTP). In so doing, the receiving party commits to certain terms of use 

(e.g., to use the data to extract solely the agreed information for the agreed purpose, to delete 

the data immediately afterwards, to secure the data against intrusions, etc.). The transmitting 

party and any other involved stakeholder, if any, must trust the receiving entity that it will abide 

by the agreed terms of data use because they have no technical means to enforce and verify the 

actual respect of these terms. This approach requires a strong trust relationship between the 

transmitting and receiving entities. It also amplifies the risks, since it increases the number of 

copies of the data and the number of actors that have access to the data. But exchanging the 

input data is a means towards the goal of computing the desired output, not an end. And it is 

not the only means available today: alternative solutions based on Privacy Enhancing 

Technologies (PET), and specifically technologies for Multi-Party Secure Private Computing 
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(MPSPC), allow today to compute the output statistics without necessarily disclosing the input 

data to any entities other than their respective data holders.  

113. The appeal for MPSPC technologies in official statistics stems from the fact that several 

innovation trends in this domain point towards the need to combine/integrate data sets held by 

different organizations. For example, the prospective extension of official statistics towards 

“non-traditional” data sources relies on the possibility to (re)use new types of data generated 

for non-statistical purposes by other organizations, including public administrations and private 

companies8. In another direction, improving the quality of statistics referring to intrinsically 

cross-border phenomena (e.g., migration, international trade) requires the integration of data 

from different countries. These trends concur to increase the appetite for integrating/combining 

data held by multiple actors. Responding to such increasing demand with the traditional 

paradigm of data exchange may not be the most effective option in all cases, as any new copy 

of the data that is passed to another organization creates additional risks and calls for additional 

protection costs. This motivates the search for alternative models to execute inter-organization 

computation that do not require direct data exchange.  

114. Setting up a robust MPSPC solution requires investments, capacity and also specialized 

skills on the side of potential adopters. Not all statistical institutions may have the internal 

resources and/or the necessary knowledge to develop, deploy and maintain their own solutions, 

and anyway the costs might be disproportionate compared to the expected benefit. The cost 

factor may discourage adoption wholly or drive towards adoption of sub-optimal solutions with 

less-than-maximum levels of security and robustness. Furthermore, interoperability may not 

be guaranteed among solutions developed independently by different institutions.  

115. The concerns about costs, robustness and interoperability led the project team9 to 

elaborate the vision of a shared MPSPC infrastructure, developed and operated by a network 

(or consortium) of statistical institutions and then made available on demand to execute 

computation based on the MPSPC paradigm. As in many other areas of Information 

Technologies, the basic idea is to decouple the development (and maintenance) from the 

utilization of the prospective MPSPC infrastructure. This allows to pool together resources and 

expert knowledge during the development phase, increasing cost-effectiveness and ultimately 

enabling the achievement of very high levels of robustness and security guarantees, based on 

state-of-the-art technologies and design criteria. 

116. The shared MPSPC infrastructure developed in this way could then be used on demand 

by statistical institutions and by their partners (e.g. external data providers). This model was 

named MPSPC-as-a-service (MPSPCaaS for short) in order to highlight that what is 

provisioned to potential users is a (multiparty, secure, private) computation service rather than 

a computation infrastructure. The ‘servitisation’ of MPSPC is instrumental in providing a cost-

effective ready-to-use alternative to direct data exchange, thus accelerating the widespread 

 

 
8
 See e.g. the Final Report of the Expert Group on Facilitating the use of new data sources for official statistics, June 2022. 

Available from https://ec.europa.eu/eurostat/documents/7870049/14803739/KS-FT-22-004-EN-N.pdf 

 
9
 Preliminary versions of this concept were presented by Eurostat at international conferences and workshops, see e.g. 

https://ec.europa.eu/eurostat/cros/content/privacy-enhancing-technologies-official-statistics-pet4os_en 

 

https://ec.europa.eu/eurostat/documents/7870049/14803739/KS-FT-22-004-EN-N.pdf
https://ec.europa.eu/eurostat/documents/7870049/14803739/KS-FT-22-004-EN-N.pdf
https://ec.europa.eu/eurostat/cros/content/privacy-enhancing-technologies-official-statistics-pet4os_en
https://ec.europa.eu/eurostat/cros/content/privacy-enhancing-technologies-official-statistics-pet4os_en
https://ec.europa.eu/eurostat/cros/content/privacy-enhancing-technologies-official-statistics-pet4os_en
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adoption of the MPSPC paradigm in the field of official statistics, i.e., statistical authorities 

and their partners. 

117. In an exemplary usage scenario, two organizations Px and Py have agreed to execute a 

particular operation f(Dx,Dy) on their respective input data sets Dx and Dy and let organization 

Pz learn the result Dz= f(Dx,Dy). In this simple example, Px and Py play the role of input 

parties while Pz is the output party. In practical cases, the same organization may play the role 

of input party and output party at the same time, i.e. Pz might coincide either with Px or with 

Py (but not with both, as otherwise the whole set of users would reduce to a single entity in 

control of all the input data and output result, with no necessity to consider MPSPC solutions). 

In the field of official statistics, the input data sets Dx and Dy often take the form of confidential 

micro-data and the domain of the function f lies in the union or intersection between the two 

input data sets Dx and Dy. Notably, as far as applications in official statistics are concerned, 

the function f is defined in advance, as part of the adopted statistical methodology, and does 

not constitute a business secret – an aspect that simplifies the operation compared to other 

business sectors where the function (model, algorithm) f is itself a confidential component. 

Also, we assume that the output party (typically a statistical authority) is entitled to receive the 

computation result Dz, regardless of whether or not it still contains privacy-sensitive or 

business-sensitive information. MPSPC allows performing such computation without requiring 

the input parties to share their data sets with any other single entity, be it the other input party, 

the output party or any other individual third party. What we have described here is a particular 

MPSPC task with parameters [Px,Py,Pz,Dx,Dy,f] to be configured and executed by the 

MPSPCaaS infrastructure along with – and independently from – other parallel tasks.  

118. In the envisioned scenario, the institutions playing the roles of input parties Px, Py and 

output party Pz represent the group of users for this particular MPSPC task. In the envisioned 

MPSPCaaS, they would rely on the MPSPC functionalities made available by the shared 

infrastructure in order to let the computation result Dz=f(Dx,Dy) flow towards the output party 

Pz, with no other information disclosed to any other party. In practice, the group of users would 

connect to the MPSPCaaS infrastructure and configure a new MPSPC task taking advantage 

of the functionalities offered by the infrastructure. In this way, the marginal cost of configuring 

a new MPSCP task would be much smaller than the cost of setting up an ad-hoc MPSPC 

infrastructure dedicated to this specific task. 

119. At an abstract level, the MPSPC infrastructure intermediating between the input and 

output parties may be seen as replacing a centralized Trusted Third Party (TTP), as shown in 

Figure 4.2. Indeed, if operation of the infrastructure would be such that a single entity would 

be technically able to control the whole computation process, the central controller would 

represent the single point of trust corresponding de facto to a TTP. In other words, a Secure 

Private Computing solution with centralized control would not be fundamentally different from 

the traditional model of data sharing with a TTP. In order to avoid that, at the heart of the 

MPSPC paradigm lies the requirement that no single entity should ever be technically capable 

to take over control of the process. Therefore, MPSPC operation must be designed so as to 

avoid any single point of trust. That means process control must be split (or divided) among a 

multiplicity of K>1 parties, which will be referred hereafter as processing parties10. In 

 

 
10

 The abstract notion of processing party introduced here may possibly, but not necessarily 

correspond to the role of computing parties in secret sharing schemes. In fact, secret sharing 
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principle, K=2 processing parties would suffice to meet this formal requirement, but for 

increased robustness we will assume hereafter a minimum number of processing parties equal 

to K=3 or higher. Furthermore, in addition to the K processing parties with active control over 

the processing operation, additional entities may be foreseen to act as passive controllers, in 

order to increase the overall level of security and trust. 

 

 
Figure 4.2 - Shared MPSPC-as-a-service infrastructure 

 

120. By definition, the K processing parties are in charge of jointly controlling the 

computation process, and therefore they are to be trusted collectively, not individually. The 

MPSPC infrastructure shall operate according to a set of policies centered around the principle 

that no computation task (thereby including simple queries) may be executed on the data 

without preliminary explicit approval of all K processing parties. The MPSPC infrastructure 

shall be engineered based on state-of-the-art technologies that are able to strictly enforce these 

policies. The robustness of the overall design shall therefore depend jointly (1) on the choice 

of the processing parties; (2) on the strength of the policies that define the operation of the 

processing parties; and (3) on the strength of the technologies that enforce these policies at 

hardware and/or software levels.  

121. Conceptually, we may think of the MPSPC infrastructure as a multi-party safe 

environment, i.e., a locked safe where the key is split into K shares held by K different 

processing parties. In order to unlock a new computation task, all key-shares must be inserted 

 

 

is one among several possible schemes of choice for MPSPC operation. In multi-key 

encryption schemes, where the equivalent of a single decryption key is split among multiple 

key holders, the notion of processing party may correspond to key holders. 
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into the lock11, therefore all K processing parties have to agree to it. The implemented policies 

and technologies determine the strength of the safe, but the overall level of trust depends also 

on the choice of the K key-share holders, i.e., on their collective level of trustworthiness.  

  
Figure 4.3 – Abstract representation of processing control distribution in the different 

paradigms. In the Trusted Third Party model a single entity is delegated full processing 

control (left). Multi-Party Secure Private Computation technologies enable multiple 

processing parties to share processing control. Therefore the processing parties must be 

trusted collectively, not individually. The input/output parties may delegate processing 

control to an external set of multiple processing parties (middle) or share processing control 

directly with the other parties (right).  

122. Moving from the traditional ‘single key’ paradigm to ‘multiple key-shares’ is the first 

innovation of MPC over TTP, as depicted in Figure 4.3. This allows replacing a single external 

TTP with multiple Processing Parties (PP). The next step is to let the entities serving as Input 

and/or Output Parties play the role of Processing Parties themselves, as depicted in Figure 4.2. 

When cast into the MPSPCaaS model, where the set of Input/Output Parties varies from one 

computation task to another, the distinction as to whether the entities in charge of acting as 

 

 
11

 The term Multi-Party is used here in the general sense, with no intention at this stage to 

focus on any particular scheme. Different mechanisms and technologies may be adopted (and 

composed) to build a multi-party safe environment like the one outlined here, including but 

not limited to secret sharing, multi-key homomorphic encryption, trusted execution 

environment with multi-party authorization and possibly others. 
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Processing Parties (PP) correspond or not to the Input/Output Parties leads to two different 

flavors of MPSPCaaS operations: 

A) Fixed-PP model, where the set of Processing Parties (PP) is fixed and does not 

change from one MPSPC task to another; 

B) Mixed-PP model, where the PP set varies from one MPSPC task to another in 

order to let some of the Input/Output Parties play the PP role for that specific task.  

 

123. Both models are in principle applicable to official statistics use-cases, and each of them 

may be preferred in different contexts. It is clear that the Mixed-PP model is more demanding 

than the Fixed-PP model for the MPSPCaaS users that are willing to take on the PP role (e.g. 

in terms of computational and organizational resources).  

4.3 Summary of received responses 

124. The affiliations of the c.ca 20 respondents were equally distributed between potential 

users/adopters (mostly statistical authorities) and developers/providers of PETs. 

125. All respondents expressed appreciation for the general concept and acknowledged the 

prospective high value and benefit of setting up a shared infrastructure of that kind, provided 

that an adequate solution is given to all technical and non-technical open issues. Some of them 

indicated this model as being valuable beyond official statistics, for other public sectors and 

even for the private sector. 

126. Besides the expressions of appreciation, most other comments provided by the 

respondents were aimed at pointing to important problem dimensions, key open issues, and 

critical design decisions. These critical aspects can discriminate between success and failure of 

the proposed concept at different levels – technology, governance, legal. Some of them were 

stated to be challenging or even very challenging to solve, but none of them was considered 

impossible or unfeasible. In other words, the concerns expressed by the experts highlight the 

importance of various dimensions, as perceived by different stakeholders, and the intrinsic 

complexity of providing acceptable solutions within the current scenario. However, no clear 

“showstopper” or “proof of infeasibility” were identified. Furthermore, for a few of such 

aspects the experts went one step beyond merely posing the issue (which is anyway a very 

useful and valuable insight for follow-up actions) and helped also to identify a possible solution 

direction. 

127. On the technological side, there was consensus among the respondents that a single 

PET technology will not be sufficient, and a combination of different PET technologies is 

necessary to meet all the requirements. They suggest considering a combination of hardware-

based (hence, TEE will be part of the game) and software-based solutions. Furthermore, 

containerization and orchestration of system components are seen as likely important functions. 

128. The following problem dimensions were highlighted as being particularly critical for 

success but also challenging: 

● Defining the exact roles of the various stakeholders and the overall governance model; 

and mapping these roles to the existing legal notions (e.g., “controller” and “processor” 

in the European legislation). This includes the assignment of verification and auditing 

powers, among others. 
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● Clarifying liabilities and defining a coherent “liability model” that is acceptable for the 

involved entities. 

● Defining who provides (builds, operates, maintains, oversees) the physical 

infrastructure. The respondents that touched this point seem to agree that it should be 

up to public bodies at least at national level to play this role, also considering the 

financial costs and the unclear returns on investment. Engagement by international 

bodies is seen as a particularly positive aspect.  

● Defining the “business model” and pricing scheme for using the system, i.e., who 

charges whom for what – and how much. 

129. Warnings and concerns were expressed about the following risks: 

● The system design and implementation should be such to avoid vendor lock-in by a 

particular technology provider (hardware or software). 

● Avoiding that the software or hardware stale and get outdated, i.e., falls behind state-

of-the-art. 

● The (lack of) scalability of certain MPSPC technologies may limit the application of 

more complex statistical methods.  

● The unclear relation between the MPSPCaaS concept (and PET in general) and the 

current legislation that was formulated in the pre-PET world. One respondent noticed 

that “outdated legislation” may hamper adoption of PET-based solutions and, if so, 

legislation would need to be adapted.  

● The need to “educate” potential adopters, and especially managers, to the new paradigm 

enabled by IPP technologies where data are used without being held or even seen. 

● The location of the processing nodes participating in a distributed/shared computation 

task must comply with the applicable legislation, and this may be difficult in case the 

data providers are subject to different jurisdictions. 

● The current PETs are not only difficult to develop but also difficult to operate, use and 

parametrize. Correct usage of an MPSPCaaS infrastructure might, thus, require expert 

knowledge that might not be easily available both at the statistical institutions envisaged 

to operate the infrastructure as well as the input parties.  

130. The following system features were indicated to be crucial for success:  

● Transparency, to ensure independent scrutiny, hence increased security, and public 

acceptance. The open-source approach was seen as an important desirable aspect 

towards increased transparency. 

● Usability by people without deep expertise in PET technologies. 

● Scalability to effectively support the intended use-cases, with the possibility to easily 

scale up or scale out in case of increased demands.  

● Independent auditing, code reviews, testing and certifications by qualified IT security 

bodies. Some respondents suggested the launch of bounty programs to encourage 

external testing by independent security experts and researchers (e.g., taking inspiration 
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by US-UK PET Prize12) based on synthetic data. Such actions should be performed 

ahead of starting operations but also during operation. 

● Ultra-High levels of security, i.e., protection of data confidentiality and data integrity.  

● Identity and access management needs to be put in place. All parties involved in the 

computation need to be identified and authenticated. Strict access control policies need 

to be in place and technically enforced to prevent illegitimate parties from accessing 

computation results. This needs to include the implementation of technical and 

organizational measures on the sides of processors, controllers, input parties and output 

parties.  

● The system needs to support functionality for identifying misbehaving parties and for 

permanently excluding them from the system. In addition to protection from passive 

attacks, some protection against active attacks should be provided, at least the capability 

to detect (if not prevent) them. 

● The possibility that input parties act as processors is seen as a necessary condition in 

some (but not all) scenarios. This is because input parties are inherently incentivized to 

at least secure their own data against unauthorized disclosure and modification. 

Especially in case of some MPC protocols, one honest processor suffices to prevent 

misuse of input data. Consequently, this feature is seen as critical for adoption in those 

scenarios. 

● Capability to evolve the system and keep the software and hardware up to date with 

respect to advancing state-of-art.  

131. The additional system features were seen as desirable or highly desirable: 

● Relying on open-source components and standardized interfaces as far as possible. 

● Interoperability with other future similar systems in the private sector. 

● Some degree of differentiation in the offered levels of security. Use-cases may require 

different levels of guarantees regarding security and privacy but also different levels of 

performance. In addition, different privacy and security mechanisms are differently 

suited depending on the types of computations to be performed. Hence, the system 

would benefit greatly from a modular approach that allows the selection and/or 

combination of various privacy and security mechanisms such as to allow solutions that 

are tailored to the use case at hand. 

● Enabling some degree of competition between processors and potential processors may 

drive down cost and increase quality of the envisaged infrastructure. 

● Some respondents indicated that output checking procedures (output privacy) may be 

offered by the infrastructures alongside IPP functions. 

132. Concerning use-cases, deterministic and probabilistic record linkage (and “join” 

operations), coupled with elementary operations (e.g., computation of cardinality, mean, 

variance), are seen as very important use-cases by multiple respondents, followed by standard 
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 https://petsprizechallenges.com 
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low-order statistical regressions. Some respondents indicated Machine Learning models as a 

generic class of possible use-cases of interest also for statistics. Finally, a some respondents 

identified additional use-cases falling outside the statistical domain (e.g., confidential 

benchmarking of private companies or public bodies’ performances, confidential aggregation 

of pollution data13, confidential support to international law enforcement). These suggestions 

reinforce the idea that similar systems would be potentially relevant and valuable also outside 

the field of official statistics.  

133. Finally, it was highlighted that the adoption of PET does not avoid the need to rely on 

a clear legal basis for data processing and, when applicable, international data transfers, 

especially in the case of personal data. 

  

 

 
13

 In many cases, data on pollution levels (e.g. in specific cities or parts thereof or from specific industries, 

factories or machinery) are not easily available as cities and/or private entities are reluctant to share them in case 

they are not obliged to do so. The envisaged MPSPCaaS infrastructure would enable confidential benchmarking, 

thereby providing communities and enterprises with previously non-available insights. 
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Chapter 5 - General takeaways  

134. In summary, the main takeaways from the Input Privacy-Preservation Project are the 

following: 

● The project has confirmed that IPP computation solutions have an enormous potential 

for official statistics. However, there is still some work to be done (also by NSOs) and 

challenges to be solved before their actual adoption in regular statistical production can 

take place, beyond experimental projects. 

● There is a need to clarify the legal aspects around the use of IPP technologies, 

particularly when (i) personal data are involved on the input side and/or (ii) the input 

data fall under different jurisdictions. 

● Processing data with IPP still qualifies as … processing data(!). Consequently, the 

adoption of IPP solutions does not exclude the need for having a clear legal basis for 

processing the data in the first place. However, the additional protection measures 

offered by IPP will be instrumental (i) to strengthen and consolidate legal compliance 

to existing legislation; (ii) improve public acceptance for extending the scope of data 

processing for statistical purposes; and (iii) lower the barrier towards extending 

statistical legislation to enable the (re)use of new data sources14. 

● Further work is needed by NSOs to understand the organizational implications of 

adopting PET solutions, and particularly IPP technologies. Shifting towards a paradigm 

where data (re)use is decoupled from data gathering and data ownership has several 

branching implications on different processes and organizational units within the NSO 

(e.g., methodological development, IT, statistical production) and between the NSO 

and other organizations (e.g., data providers or NSOs in other countries). 

● Liabilities, governance, and process ownership aspects (e.g., cost distribution) need to 

be carefully re-thought and possibly re-defined as the traditional practices may not be 

applicable as is to the new paradigm. 

● On the technological side, it is unlikely that a single PET component (e.g., a single 

software protocol) can provide a sufficient “solution” for a particular use-case. Most 

use cases will require the adoption of more articulated “system” solutions based on the 

combination/integration of different PET components. 

● Certain technology trade-offs dimensions need to be better investigated and understood 

by potential adopters, e.g., complexity vs. scalability; security vs. performance; 

general-purpose vs. specialized ad-hoc protocols. As the best balance point along each 

trade-off dimension depends on the use-case scenario, potential technology adopters 

need to work together with technology providers to design effective and efficient 

solutions case by case. 

 

 
14

 Relevant to this point, it is worth highlighting that in January 2023 the European Commission has adopted the 

proposal for a new Regulation on European statistics on population and housing that explicitly states in the legal 

text that data sharing should be “based preferably on privacy enhancing technologies that are specifically 

designed to implement the principles of Regulations (EU) 2016/679 and (EU) 2018/1725, with particular regard 

to purpose limitation, data minimisation, storage limitation, integrity and confidentiality.”  

https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12958-Data-collection-European-statistics-on-population-ESOP-_en
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● Given the complexity of the task and the many intermingled technological and non-

technological aspects it is necessary for technology adopters (e.g., NSO) to build a 

sufficient set of internal technical skills and expert knowledge. Such knowledge is 

required to interact fruitfully with technology providers, not to replace them. 

Experimental “lab” activities and IT sandboxes are instrumental to build such 

knowledge on the side of NSOs. 

● Fully open-source solutions may have not yet achieved the level of technological 

maturity of proprietary solutions.  

● The robustness of PET solutions depends not only on the “protocol” but also on the 

details of their actual implementation. If a (nominally) strong protocol is implemented 

in a simplistic way, the overall system may not be sufficiently robust and could be 

exposed to attacks (e.g., side-channel attacks). 

135. These considerations should be seen as an encouragement for the management of 

statistical organizations to continue investing in skill building and infrastructure in the field of 

Input Privacy Preservation, both internally to statistical systems, at national and international 

level, and in partnership with other private and public organizations. 
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Annex - Private set intersection with analytics: use case Istat-Bank of Italy 

Motivations 

136. Producing statistics with the use of multiple data sources allows us to produce quality 

statistical output. The datafication process of the modern society has favored the proliferation 

of many new sources of data, and their integration can give benefit to the production of 

statistics. While the use and integration of data provides benefits, it also carries privacy risks 

that statistic producers need to consider. In the context of official statistics, NSIs are studying 

and experimenting privacy preserving techniques that can help to overcome the privacy risks 

associated with new statistical production scenarios that require the use and integration of 

multiple data sources. One of the most used techniques is Secure Multi Party Computation 

(SMPC). It is a subfield of cryptography with the goal of creating methods for parties to jointly 

compute a function over their inputs while keeping those inputs private. 

137. In this appendix we will illustrate a joint work in which we apply the Private Set 

Intersection (PSI), a problem within the field of Secure multi-party computation. The PSI 

concept can be explained by this trivial example: there are two friends Alice and Bob such that 

Alice has a set of items A= (a1,…, an) and Bob has the set B=(b1,…, bn). The goal is to design 

a protocol by which Alice and Bob obtain the intersection A∩B, under the restriction that the 

protocol must not reveal anything about items that are not in the intersection. In the context of 

Private Set Intersection there are several possible scenarios; we list and explain the following: 

(i) Private Set Intersection (PSI), Private Set Intersection with Enrichment (PSI-E), Private Set 

Intersection with Analytics (PSI-A), Private data mining (PDM). 

138. Exact PSI definition: Let P1 and P2 be parties owning (large) private databases D1 and 

D2. The parties wish to apply an exact join to D1 and D2 without revealing any unnecessary 

information about their individual databases. That is, ideally, the only information learned by 

P1 about D2 and by P1 about D1 is D1 ∩ D2. 

139. PSI-E definition Let P1 and P2 be parties owning (large) private databases D1 and D2. 

The parties wish to apply an exact or approximate join to D1 and D2 without revealing any 

unnecessary information about their individual databases. After that, they wish to enrich joined 

records with variables by both parties. At the end of the process, P1 will learn additional P2 

variables on D1∩ D2 and P2 will learn additional P1 variables on the same intersection PSI-A 

definition. The parties wish to perform a statistical analysis on the intersection of their 

databases in a private fashion. To identify the records belonging to the intersection, they agree 

to apply an Exact PSI. At the end of the process, the only information learned by the parties 

(beyond the keys of the records belonging to the intersection) is the result of the statistical 

analysis. 

140. Private data mining definition: Let P1 and P2 be parties owning (large) private 

databases D1 and D2. The parties wish to apply an analytics function to the joint database 

D1∪D2 without revealing any unnecessary information about their individual databases. At the 

end of the process, the only information learned by P1 about D2 is that which can be learned 

from the output of the analytics function, and vice versa. 
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Use case 

141. The use case refers to the Private Set Intersection with Analytics (PSI-A) scenario. The 

parties involved, Istat and Bank of Italy, own dataset D1 and D2 respectively. D1 and D2 have 

a common key, which can be exploited to perform an Exact PSI. The parties wish to enrich 

their information assets by learning the results of a statistical analysis applied to the intersection 

of their datasets.  

142. The following figure shows the fields of the two datasets D1 and D2: 

Figure A1 - Istat and Bank of Italy datasets structure 

 

The role of the parties involved is equal and all parties can make the same kind of analysis. 

We are in a G2G scenario, in which two or more public entities want to make analytics on the 

union of their datasets, in a privacy preserving way. This problem is often solved with legal 

agreements between the entities involved. Without legal ex ante agreements, a technological 

solution would make it easier to achieve the goal both from a time and an organizational 

point of view. This solution must provide a trusted infrastructure, which guarantees the levels 

of input privacy preserving required by the Data Protection Authorities. 

143. To implement the use case we assume to be in an honest-but-curious (HbC) context in 

which the involved parties will respect all the rules defined in the protocol. We assume that, in 

concrete application scenarios, the typical size of involved dataset will be in the order of dozens 

of attributes and millions of records. The use case has to provide the following features:  

• A step to perform the join on the keys of the datasets owned by Istat and Bank of Italy. 

• A step to compute a set of simple statistical functions on an encrypted enriched dataset 

built with the strictly necessary variables. 

144. In the use case, there are two distinct phases:  

• An off line phase in which the two parties: (i) share datasets of individuals that have a 

common key (i.e. Tax Code); (ii) agree to share some variables; (iii) share a symmetric 

key through RSA protocol; (iv) share IP addresses to use. 

• An on line phase in which: (i) is performed a Private Set Intersection following the De 

Cristoforo protocol15; (ii) the data in encrypted format are transmitted to a neutral third 

party (i.e. the Linker); (iii) Istat and bank of Italy can submit queries to the Linker and 

obtain the results desired. 

145. The De Cristoforo process is briefly described in the following figure: 

 

 
15 E. De Cristofaro and G Tsudik Practical Private Set Intersection Protocols with linear Computational and 

Bandwidth Complexity. 

Dataset 1 (Istat)

Tax Code Number of children Age class Tax Code Income class Mortgage payment class solvent/insolvent borrower

Dataset 2 (Bank of Italy)
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Figure A2 - Private Set Intersection phase 

 

146. At the end of this step, the two parties, Istat and bank of Italy, own the intersection of 

their two dataset as result. 

147. In the second step (i.e. loading phase), shown in the figure 3, the encrypted datasets of 

the two parts are uploaded on the Linker server; in this way the linker receive the datasets, of 

the two parties, encrypted with the same shared key. The use of the same cryptographic key 

will allow the linker to count equal fields, even if encrypted. 

 

 
Figure A3 - Loading phase 

 

148. In the third step (i.e. query phase) as shown in figure X the two parties can send a query 

(i.e. group by, counts, etc.) to the linker and receive the results.  
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Figure A4 - Query phase 

Conclusions  

149. The use case described above has pros and cons. As pros, we mention:  

• The possibility of applying it to similar situations in which two or more parties want to 

enrich their information assets by performing an intersection of their datasets in privacy 

preserving manner. 

• The transmission to the third party is only for the encrypted and strictly necessary data. 

• The two parties do not exchange data directly, except those necessary to calculate the 

intersection on the A∩B keys. 

• Third party can carry out checks on the counts returned and ensure that the result cannot 

be traced back to the individual elements of the population.  

150. As cons, we mention:  

• Information enrichment takes place only in terms of aggregated data (counts).  

• Privacy preservation is not guaranteed in the event that one of the two parties agrees 

dishonestly with the third party. 

• Two parties become aware of which elements of their dataset also belong to that of the 

other party. 
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