Approaches to Pre-Enumeration Census and Survey Mapping

Claudia O. Espinosa Villegas and Derek Azar Population Division, U.S. Census Bureau USCB Workshop on Preparing for CAPI Operations September 15, 2022

Outline

Introduction	 What does digital mean for statistical mapping? What happens during statistical mapping? 	
Approaches	 In-Office, Field, and Hybrid Approaches Skills, Resources, Advantages, and Challenges 	
Downstream Effects	 How does mapping affect subsequent operations? What is the effect of changing modes between operations? 	
Census and Survey Comparison	 • Why has digital adoption taken longer for censuses? • What are the effects of scale? 	
Technical Assistance	What are we doing?What can we do better?	

Effect of Digital Data Collection on Statistical Mapping

- Strong parallels to how storage and processing of statistical tabular data have progressed
- Steady improvement of processing and storage capabilities
- Gradual and uneven adoption of integrated data management

Components of Statistical Mapping

- Demarcation
 - Define work and sampling areas for data collection
- Listing
 - Define the in-universe or in-sample units of enumeration
- Operational Control
 - Use of spatial data to track and monitor subsequent operations

Digital Spatial Data and Management

- We have had digital components to census mapping since the late 1960s. Developed world NSOs adopted digital mapping moving into the 1970s.
- Incremental progress toward digital mapping was made in following 40 years.
- There has been a close partnership between software developers and the statistical geography community.

Rapid Adoption

leapfrog verb \'lēp-,fróg, -,fräg\ to move ahead of or beyond (someone or something) in a very quick and sudden way

- Developed world NSOs **gradually** incorporated new electronic technologies into the census process over the course of 100+ years.
- Developing world NSOs have the opportunity to leapfrog this gradual approach and rapidly adopt new technology in just a few years...
 - ... and most are taking advantage of this opportunity!

Gradual Adoption

- U.S. Census Bureau:
 - **Pre-1950s:** Heavily paper driven, door-to-door enumeration; early computerization (e.g. UNIVAC).
 - **1970s/80s:** Increased mechanization; mail-out/mail-back questionnaires; small spatial databases.
 - **1990s/2000s:** Master Address File/TIGER development and integration (advanced spatial database); laptop questionnaires (some surveys).
 - 2010s: Internet response; tablet/smartphone questionnaires; optimized field workforce management; more extensive geospatial data management.

Rapid Gradual Adoption

Developing World NSOs

• U.S. Census Bur<u>ea</u>200s

Desktop + CSPro

- Pre-1950s: Meavily paper driven, door-to-door enumeration; early computerization (e.g. UNIVAC).
- 1970s/80s: Increased mechanization; mail-out/mail-back questionnaires; small spatial databases.
- **1990s/2000s:** Master Address File/TIGER development and integration (advanced spatial database); laptop questionnaires (some surveys).
- 2010s: Internet response; tablet/smartphone questionnaires; optimized field workforce management; more extensive geospatial data management.

Source: https://www.census.gov/history/

Approaches to mapping operations

In-Office Methods

In-Office Methods

- Almost certainly requires use of imagery...allows for aerial view not available in field without printed imagery (cumbersome) or tablet (technologically advanced)
- ...BUT NSOs will consider in-office demarcation even when lacking satellite imagery.
 - \circ Not advisable
 - Requires high-quality vector data such as road networks or cadastral data and considerable time for interpretation
 - Ideally vector layers are available even when using imagery

What Happens During In-Office Demarcation?

- •Conflation and interpretation of physical features and preexisting statistical geography if they exist
- •Estimation of the number of housing units
- •Digitization of collection geography boundaries
- •Enforcement of correspondence rules between statistical and administrative geography

What Happens During In-Office Listing?

- Identification of possible housing units using satellite imagery
 - Multi-family dwellings will be tagged with one point during an in-office listing operation
- Sorting between likely residential buildings and nonresidential or non-built areas

 Sometimes difficult to distinguish between features and building-use

Resource Requirements for In-Office Pre-Census Mapping

High-resolution	High-speed	Upgraded	Training
imagery	internet	workstations	
 At least 10- meter Worldview Sentinel? Quickbird (legacy) Aerial photography 	 Streaming imagery Comparison Data download 	 Processor Graphics card RAM Graphic element overlay 	 Low learning curve for digitizers High learning curve for technical supervisor

In-Office Benefits

- Reduced travel and time spent on ground
- Reduce resource requirements
 - Map printing
 - Network traffic during in-field operations
- Save on logistical and equipment costs

Approaches to mapping operations

Field Methods

Field Objectives

Update

- Add missing units (housing or enumeration)
- Edit boundaries and attributes

 Split/Merge
 - \odot May include listing questionnaire
- Delete/flag objects misidentified as structures, vacant and nonresidential buildings

Verification

- Can an enumerator cover this area within the given collection period?
 - \circ Physical features, obstacles
 - Number of housing units (80-150)
- Are all housing units identified and covered by a collection block?
- •
- Does collection geography conform to business rules?

Capture and Finalization of Field Data

- Data may be transmitted through mobile network or WiFi (e.g. web-based file share, email)
- Boundaries should be checked by headquarters staff

 Methodology will vary depending on technology used
- There should be a clearly differentiated working and production containers for incoming and verified data

Approaches to mapping operations

Hybrid Methods

CAPI or Paper Operation?

What is a Hybrid Approach?

- Census methodologies may combine approaches
- Can view mapping methodology in a 2x2 matrix (field/office)x(paper based/IT)
- Different combinations appropriate for different skill and resource levels

Mapping Operations

Characterizing Approaches

Field/Paper

- Most traditional
- Visit and interpret each block and HU
- Sketch maps
- Census geography sketched onto physical features
- Relational/Positional data

Office/Paper

- Collection blocks pre-identified
- Structure points pre-identified
- Possible to clear blocks and HUs without any further work
- Annotation of updates onto positionally accurate GIS data
- Relational/Positional data

Field/Tablet

- Field worker interpretation of ground-situation with digital tools
- Visit and interpret each block and HU
- Possible GPS guidance
- Census geography digitized onto physical features

Office/Tablet

- Pre-identification
- Possible to clear blocks and HUs without any further work
- Census geography digitized onto physical features
- Possible GPS guidance
- Positionally correct data generated

Resources and Training

Field/Paper

- Printed materials and transportation
- Plotters* and scanners*
- Everyone is doing what they have been doing for the past N years
- Field staff may require training if working with GIS maps for first time

Office/Paper

- Printed materials and transportation
- Imagery
- GIS software
- Plotters and scanners*
- Training on digitization and photo interpretation
- Field staff may require training if working with GIS maps for first time

Field/Tablet

- Devices, transportation, and security
- Mobile enabled spatial data and software
- Operations similar to past practice with different tools
- Tablet-specific instruction for field staff

Office/Tablet

- Devices, transportation, security
- Imagery and GIS software
- Mobile enabled spatial data and software
- Training on digitization and photo interpretation
- Tablet-specific instruction for field staff

*denotes optional

Characterizing Approaches to Mapping Operations

DOWNSTREAM EFFECTS

Relationship to CAPI

Mapping Operations Network Infrastructure

Inited States[®]

- Network infrastructure should be key determinant when developing census methodology
- Security, usability, speed
- Data loss or confidentiality breach not necessarily only way to lose public trust

28

Operational Control

- Maps used for navigation and tracking data collection progress
- CAPI/network enabled operational control requires fully developed network infrastructure
- Business intelligence dashboards
- Strong role for contractor services

Changing Modes Between Operations

Paper Maps <-> CAPI Operation Control Boundary interpretation and digitization Housing points nearly impossible to capture Mapping CAPI Maps <-> Paper Enumeration Edge matching between work areas Transfer and printing

Operational Control Enumeration

Network Operational Control <-> Paper Maps

- Manage work at level of geography digitized
- Shared resources can be used to track progress in a non-networked environment

Censuses vs. Surveys

Size of the dataset is main driver of differences!

Census	Survey	
Millions (respondents) 100s of millions (points)	Thousands	
N/A or Custom	As Is	
Positional	Relational/Variable	
Systematic Required	Manual Possible	
	CensusMillions (respondents) 100s of millions (points)N/A or CustomPositionalSystematic Required	

Integrated Technology Adoption in Censuses

- Strong risk aversion in censuses
- Cost savings harder to quantify
 - High-investment, long returnperiod model for spatial data digitization
- Does this relationship apply to integrated systems with mapping component?

Source: U.N. Statistics Division Handbook on geographic information systems and digital mapping. New York. 2000

Role for Technical Assistance

• Outsourcing software development and network infrastructure

○ Not part of NSO core mission

 $\odot \mbox{Requires surge in capacity and skills}$

o Is there still a need for technical assistance in census and survey mapping?

Technical Assistance – What We Are Doing

- Introductory Desktop GIS
- Enumeration Area Digitization and Creation
- Pre-Census Spatial Data Management
- Basics of Remote Sensing
- Enterprise Data Editing and Versioning
- Field Map Representation and Interpretation
- Cartographic Dissemination Products

Mapping Assistance Moving Forward

- Improvement and understanding of day-to-day work

 New staff and functionality
- Data management and maintenance

 Schemas and harmonization
 QA/QC
- Automation of repetitive tasks
- Transition to enterprise data management
- Accurate and useful representation of data in both pre- and post-census maps

Questions?

Thank you!

Claudia O Espinosa

claudia.o.espinosa.villegas@census.gov

