Data Science Campus Welcome

ONS-UNECE ML Group Coffee and Coding

28 April 2022

• • • • • • • • • • • •

Data Science Campus

Housekeeping

Recording

Today's webinar will be recorded. The recording will be available on the statswiki.unece.org/display/ML/Machine+ Learning+Group+2022 after the event.

÷ — –

Feedback

At the end of the seminar, you will be asked to take part in a short survey.

Foundations of Machine Learning for non-programmers

Thomas Wise

Data Science Graduate Consumer Price Method Transformation @thomasj_wise

28 April 2022

ullet٠ • •

Who am I?

- MSci in Psychology (University of Reading, UK), with a focus on clinical psychology and research methods
- MSc in Methodology and Statistics (Utrecht University, NL), with a focus on machine learning comparisons for predicting PTSD
- I'm passionate about data literacy & education, generative art and data visualization
- I'm an avid cook, indoor gardener and lover of musical theatre!

Office for National Statistics

Session Goals & Aims

- Begin to understand:
 - The utility and purpose of Machine Learning
 - The problems which can be tackled with Machine Learning
 - The steps involved in addressing Machine Learning problems
 - How to interpret and evaluate Machine Learning problems

Session Schedule

- Introduction
- Part 1a: What is Machine Learning?
- Part 1b: When to use Machine Learning?
- Part 1c: Reproducibility & Machine Learning
- Break: 10 minutes
- Part 2a: How to use Machine Learning
- Part 2b: How to evaluate Machine Learning Models
- Part 2c: Interpreting Machine Learning Models

What do you think when you hear Machine Learning?

What do you think when you hear Machine Learning? PM Session

recognising patterns emerging from repeated actions

Forget about the data quality

Jargon Buster

- Algorithm: A finite sequence of well-defined instructions
- Metric: A quantitative assessment of performance
- Aggregates: Combining of multiple lower level statistics or layers of information.
- Hyperparameter: A Parameter used to control the learning process, not derived through training

Office for National Statistics

What is Machine Learning

- Wikipedia defines machine learning as:
 - Machine learning (ML) is the study of computer algorithms that can improve automatically through experience and by the use of data.¹
 - Machine learning (ML) is a branch of **applied computer science**, focusing upon mathematical processes or equations, which improve automatically through experience and by the use of data.

1: Mitchell, Tom (1997). Machine Learning. New York: McGraw Hill. ISBN 0-07-042807-7. OCLC 36417892.

What methods are captured by Machine Learning?

- Traditional Statistical Methods:
 - Regression
 - Principal Component Analysis (PCA)
 - Correlations (debatable)
- Computer Vision
- Natural Language Processing
- Supervised Learning
- Unsupervised Learning

What Official Statistical Problems could be addressed using Machine Learning?

AM Session

predict socioeconomic missina validity E&I text classification area

Automating data collection processes with NLP

predictions values data linkage

small area level estimates Imputation

What Official Statistical Problems could be addressed using Machine Learning?

Regression and Classification problems.

increased automation of processes?

Types of Machine Learning Technique

- Supervised Learning
 - Those which use *tagged* or *labelled* data to learn.
- Methods include:
 - Regression
 - Classification

- Unsupervised Learning
 - Those which use *untagged* or *unlabeled* data to learn.
- Methods include:
 - Clustering

Types of Machine Learning Technique

- Supervised Learning
 - Regression
 - Problem aim: predict or project
 - Outcome variable: Continuous
 - Classification
 - Problem aim: classify
 - Outcome variable: Categorical

- Unsupervised Learning
 - Clustering
 - Problem aim: group or cluster
 - No outcome variable

Types of Machine Learning Technique

- Supervised Learning
 - Regression
 - Linear Regression
 - General Linear Models
 - Classification
 - Decision Trees
 - Support Vector Machines

- Unsupervised Learning
 - Clustering
 - K-Means Clustering

Some Real World Examples

Example	Data Information	Technique Category
Imputation in the sample survey on participation of Polish residents in trips: <i>Statistical Office in Rzeszów, Statistics Poland;</i> <i>Sebastian Wójcik.</i>	Multiple input variables, outcome variable is continuous	Supervised Learning - Regression
An ML application to automate an existing manual process through the use of aerial imagery. <i>Australian Bureau of Statistics;</i> <i>Daniel Merkas and Debbie Goodwin</i>	Multiple input variables, outcome variable is categorical	Supervised Learning - Classification
No UNECE Examples known, but can include Recommender Systems and Customer Segmentation	Multiple variables, without outcome variable	Unsupervised Learning - Clustering

Office for National Statistics

Example 1: Supervised Learning, Regression

- Imputation in the sample survey on participation of Polish residents in trips:
 - Statistical Office in Rzeszów, Statistics Poland
 - Sebastian Wójcik
- Machine Learning Models:
 - Classification and Regression Trees (CART)
 - Random Forest
 - Optimal Weighted Nearest Neighbor
 - Support Vector Machines

Example 2: Supervised Learning, Classification

- An ML application to automate an existing manual process through the use of aerial imagery.
 - Australian Bureau of Statistics (ABS)
 - Daniel Merkas and Debbie Goodwin
- Machine Learning Techniques
 - Computer Vision

What could we do to ensure the reproducibility of our machine learning projects?

keep a snapshot of the dataset open data and code Use good standard coding

Office for National Statistics

What could we do to ensure the reproducibility of our machine learning projects?

consistent recommended software Functions Data centric Train on relevant and high-quality data publish the training set

Peer review data cleaning simplicity always give same inputs

clear documentation

Clarity use open source ML pakcages/models code availability set the seed! consistent methodology

data input and tranformation automation

clearly labelled code

Reproducibility: Core Elements

Core Element	Definition	Challenges	Solutions
Code	The foundation of any project, which defines the ML algorithm.	 Inconsistent Style (Pseudo) Randomness Untracked Development 	 Experiment tracking and logging Version Control Style Guides Randomization management
Data	What the ML algorithm was trained, validated and tested upon.	 Changes in Data 	 Data change tracking and logging Data Versioning Artifact & Model storage
Environment	The environment in which the ML algorithm was built, developed and run	 Hyperparameter Inconsistency Library, Framework and Package changes, updates or revisions 	 Environment recording & dependency management Model Versioning Version Control Model Registry

Reproducibly in Practice

Solutions	Practical Tools
Change tracking and logging	Git, Gitlab or equivalentComprehensive ReadMe or Diary based document
Version control	Git, GitLab or equivalent
Style Guides	Python: PEP8R: Tidyverse or Google Style Guide
Environment Management	 Git, Gitlab or equivalent Comprehensive ReadMe or Diary based document Requirements File (listing all packages and versions)
Randomness Management	Setting randomness parameter (seeds)

What country or organisation do you work for?

UN Women, New York Urban Foresight

Central Statistical Bureau of Latvia

UNESCWA

Australia

ABS

Canada /Statistics Canada UK - ONS ONS UK University of Queensland

Istat Statistics Poland

TurkStat Central Statistics Office Ireland

national statistics office Ireland CSO (Ireland)

Lebanon, UN ESCWA now ; Canada, Statistcis Canada then !

Central Statistical Bureau Republic of Latvia

Office for National Statistics

What country or organisation do you work for? PM Session

Ecuador, in the National Statistics Office

National Institute of Statistics Ecuador

Canada;

Statistics US - UNSD

Office for National Statistics

Brazilian

Canada Service incomelow	NIC	ppl deliver	y Institute Brazil / IBGE
Food underserved United Nations	IN D	racialized U	Org JK Geography
Frontline University StatCan immigrants	uk ons homeless	UK - Stockpo	ort Council NISRA - NI
NSO) ONS - UK ^{Star}	tistical Cent	er of Iran	
(Brazilian Ireland's I	NSI - the Cer	ntral Statistics	office.

Department of Health & Social Care

What is your role in your organisation?

What is your role in your organisation?

Office for National Statistics

Machine Learning Lifecycle

Data Cleaning & Manipulation

- Handling Missing Data
- Handling of Outliers
- Handling of incorrect data
- Feature Engineering
- Feature Selection
- Quality assurance

Data Preparation

- Split data into:
 - Training and Testing Sets
 - Training and Validation Sets
- Specific Model Preparation

Determine K-Folds Cross
 Validations

Model Application: Training

- Once cleaned data can be trained to a model
- Usually begin with your default model

Office for National Statistics

Model Application: Testing

Model Tuning and Optimization

- Grid Search
 - Build models for every combination of hyperparameter value
- Random Search
 - Build models for a random set of hyperparameters based on a distribution
- Bayesian Optimization
 - Build models based on Bayesian methodology with the previous hyperparameter influencing the next.

Model Deployment and Future

- Model Deployment:
 - As web applications
 - Batch production
 - Model Embedding

Metric	Description
R-Squared	Amount of variance explained in the model
Adjusted R-Squared	Amount of variance explained in the model
Mean Absolute Error (MAE)	Absolute Difference between actual and predicted values
Mean Absolute Percentage Error (MAPE)	Percentage variation of the Mean Absolute Error
Mean Squared Error (MSE)	Squared Difference between actual and predicted values
Root Mean Squared Error (RMSE)	Square Rooted of Mean Squared Error
Root Mean Squared Log Error (RMSLE)	Log of the Root Mean Squared Error

Metric	What does it show?	Interpreting the score	Advantages	Disadvantages
R-Squared	Proportion of explained variance	Range: 0-1 0 = No explanation 1 = Total explanation	Highly interpretable	Works in isolation, not across model comparable
Mean Absolute Error (MAE)	Measure of prediction error	Range: 0 to infinity 0 = No prediction error Inf = Large prediction error	Robust to outliers	Not graphically differentiable
Mean Absolute Percentage Error (MAPE)	Percentage based measure of prediction error	Range: 0-100 (%) 0 = No prediction error 100 = Large prediction error	Highly interpretable	Does not handle zero as an actual value well
Root Mean Squared Error (RMSE)	Measure of prediction error	Range: 0 to infinity 0 = No prediction error Inf = Large prediction error	Highly interpretable	Not as robust to outliers

Office for National Statistics

- Draw N samples without replacement, amounting to 90% of the dataset size
- 2. Train model based on selected hyperparameters
- 3. Make predictions based upon the remaining 10% of cases
- 4. Calculate metrics (R², RMSE, MAPE & MAE)
- 5. Average metrics over all N draws.

III Dataset pertaining to expenditures for transport

Method (R function)	MAE	MAPE	RMSE	R2
Linear Model OLS (Im)	440.05	1.483	853.00	0.418
General Linear Model GLS (glm)	440.05	1.483	853.00	0.418
Robust Linear Model (rlm)	413.35	1.208	874.08	0.402
LARS (lar)	448.23	1.559	892.36	0.368
Predictive Mean Matching (pmm)	434.59	1.666	841.59	0.434
CART (rpart)	373.62	1.149	696.27	0.612
Random Forest (randomForest)	407.10	1.259	820.22	0.462
Optimal Weighted Nearest Neighbour (kknn)	393.03	1.244	774.25	0.533
Support Vector Machine (svm) radial kernel	519.22	1.384	1149.6	0.057
Support Vector Machine (svm) linear kernel	458.63	0.912	1043.7	0.272

Predicted Condition				
Actual Condition	Total Population = P+N	Predicted Positive (PP)	Predicted Negative (PN)	
	Positive (P)	True Positive (TP)	False Negative (FN)	
	Negative (N)	False Positive (FP)	True Negative (TN)	

- Correct results:
 - True Positive (TP)
 - True Negative (TN)
- Incorrect results:
 - False Negative (FN)
 - False Positive (FP)

	Predicted Condition						
	Total Population = P+N	Predicted Positive (PP)	Predicted Negative (PN)				
ndition	Positive (P)	True Positive (TP)	False Negative (FN)	Sensitivity, True Positive Rate, Recall = TP/P			
Actual Cor	Negative (N)	False Positive (FP)	True Negative (TN)	Specificity, True Negative Rate, Selectivity = TN/N			
	Accuracy = TP+TN/P+N						

- Sensitivity or True Positive Rate
 - True Positive / Positive
- Specificity or True Negative Rate
 - True Negative / Negative
- Accuracy
 - (True Positive + True Negative) / Total Population

	Predicted Condition					
	Total Population = P+N	Predicted Positive (PP)	Predicted Negative (PN)			
ndition	Positive (P)	True Positive (TP)	False Negative (FN)	Sensitivity, True Positive Rate, Recall = TP/P		
Actual Cor	Negative (N)	False Positive (FP)	True Negative (TN)	Specificity, True Negative Rate, Selectivity = TN/N		
	Accuracy = TP+TN/P+N	Positive Predictive Value, Precision = TP/PP	Negative Predictive Value = TN/PN			

- Precision or Positive Predictive value
- Negative Predictive value
- F1-score
- Area under the Curve (AUC)

		Actual					
	Commercial	High Density	Residential	Under-Construction	Vacant Land	Poor Geocode	Total
Commercial	201	16	2	3	4	3	229
High Density	34	229	4	5	2	1	275
Residential	3	5	238	7	2	4	259
Under-Construction			5	230	8	1	244
Vacant Land	9			4	232	3	248
Poor Geocode	3		1	1	2	238	245
Total	250	250	250	250	250	250	1,500

	Commercial	High Density	Residential	Under-Construction	Vacant Land	Poor Geocode	Total
True Positive	201	229	238	230	232	238	1,368
True Negative	1,167	1,139	1,130	1,138	1,136	1,130	6,840
False Positive	28	46	21	14	16	7	132
False Negative	49	21	12	20	18	12	132
Total	1,445	1,435	1,401	1,402	1,402	1,387	8,472

	Commercial	High Density	Residential	Under-Construction	Vacant Land	Poor Geocode
Proportional Accuracy	94.7%	95.3%	97.6%	97.6%	97.6%	98.6%
Proportional Accuracy [95% CI]	94.7% [93.5% <i>,</i> 95.8%]	95.3% [94.2%, 96.4%]	97.6% [96.9% <i>,</i> 98.4%]	97.6% [96.8%, 98.4%]	97.6% [96.8%, 98.4%]	98.6% [98%, 99.2%]
Precision	87.8%	83.3%	91.9%	94.3%	93.5%	97.1%
Recall	80.4%	91.6%	95.2%	92.0%	92.8%	95.2%
F1	83.9%	87.2%	93.5%	93.1%	93.2%	96.2%

Interpretability of Machine Learning Models

Layer Type	Details		
2D Conv Layer	[Filters = 32, Kernel = 3x3, Activation = Relu]		
Max Pooling Layer	[Pool = 2x2]		
2D Conv Layer	[Filters = 32, Kernel = 3x3, Activation = Relu]		
V			
Max Pooling Layer	[Pool = 2x2]		
2D Conv Layer	[Filters = 32, Kernel = 3x3, Activation = Relu]		
Max Pooling Layer	[Pool = 2x2]		
2D Conv Layer	[Filters = 32, Kernel = 3x3, Activation = Relu]		
V			
Max Pooling Layer	[Pool = 2x2]		
Flatten Layer			
V			
Drop Out Layer	[Rate = 0.5]		
V			
Dense Layer	[Units = 512, Activation = Relu]		
Dense Layer	[Units = 6, Activation = Softmax]		

Interpretability of Machine Learning Models

Session Goals & Aims

- Begin to understand:
 - The utility and purpose of Machine Learning
 - The problems which can be tackled with Machine Learning
 - The steps involved in addressing Machine Learning problems
 - How to interpret and evaluate Machine Learning problems

Things I've not covered / Next Steps for you

- Model Over/Under fitting, and its impact
- Impact of Bias in model selection and application
- Hyperparameter details & tuning techniques
- Benefits and Curse of Ensemble Methodologies
- Calculating Multi-category confusion matrix metrics
- Discussing the role of sample & group size in performance

Further Reading:

- UNECE Website: https://statswiki.unece.org/display/ML/Studies+and+Codes
- UNECE Machine Learning for Official Statistics guide:
 - <u>https://unece.org/statistics/publications/machine-learning-official-statistics</u>
- An introduction to Statistical Learning;
 - Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani
- Pattern Recognition and Machine Learning
 - Chistopher M. Bishop
- R for Data Science
 - Hadley Wickham and Garrett Grolemund
- Python Data Science Handbook
 - Jake VanderPlas

Office for National Statistics

Join the Machine Learning 2022 Group!

- Machine Learning Group 2022:
 - <u>https://statswiki.unece.org/display/ML/Machine+Learning+Group+2022</u>
- To join the mailing list or group, drop the team an email:
 - ML2022@ons.gov.uk

Examples

- Statistics Poland:
 - <u>https://statswiki.unece.org/display/ML/Studies+and+Codes?pre</u> view=/285216428/290358687/ML_WP1_EI_Poland.pdf

- ABS
 - <u>https://statswiki.unece.org/display/ML/Studies+and+Codes?pre</u> view=/285216428/290358690/ML_WP1_Imagery_Australia.pdf

Thank you for coming

