	2	7
Γ		
L		

Privacy Preserving Analytics

PSI + Analytics using Homomorphic Encryption

R. Schreijen – IT Solution Architect Nov. 17th, 2021

Topics

- Purpose
- Homomorphic Encryption (short introduction)
- PSI using HE
- Analytics using HE
- Analytics using HE + helper
- Q&A

Purpose

ß

High level purpose

Private Set Intersection:

Determine set intersection of datasets from multiple owners while preserving input privacy

e.g. 'How many people are customers of both company A and B without revealing specific customers to each other?'

Privacy Preserving Analytics:

 Perform statistical analysis on datasets from multiple owners while preserving input privacy

> e.g. 'What's the average spending of customers of company A who are also customer of company B?'

Preserving input privacy

Several privacy preserving technologies:

- Trusted Execution Environment
- Garbled circuits
- Secret Sharing
- Homomorphic Encryption
- •
- Combination(s) of above technologies

Homomorphic Encryption

Homomorphic Encryption

- Computations on encrypted data possible without decrypting first
- **Result** after decrypting **equals** equivalent **computation on** unencrypted **cleartext** :

Decrypt(Function(Encrypt(x))) = Function(x)

(actual function in the encrypted domain is not identical to function in unencrypted domain)

Asymmetric: different keys for encrypting and decrypting

Enables 'outsourcing' of computations on your sensitive data to others

2 Types of HE

- Partial, only single type of operation possible, e.g.:
 - Multiplicative (ciphertext · ciphertext)
 - Additive (ciphertext + ciphertext)
- Fully, both additive and multiplicative
 - Severe performance drop
 - Very large ciphertexts and keys
 - Limited arithmetic circuit depth
 - Added complexity

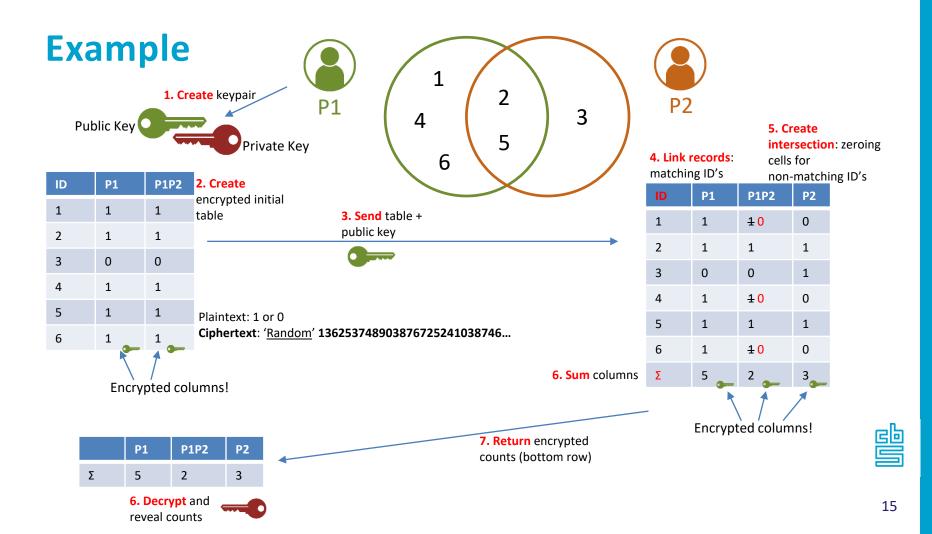
Homomorphic Encryption: Important aspects

- Ciphertexts are:
 - large, random-looking numbers
 - **re-randomizable** (multiply by encrypted 1 or add encrypted 0...)
 - indistinguishable!

Plaintext: 3

Ciphertext: 1736734601920938409279237659872346123871002093878777742341

Plaintext: 3 Ciphertext: 9928374645102937462812384760092374987623466277478488222164


PSI using HE

Concept – key aspects

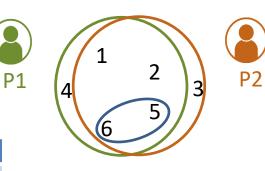
- Set membership of a private set can be expressed numerically (1 = in my set, 0 = not in my set)
- HE encrypted 1's and 0's are indistinguishable
- HE encrypted set membership can be added numerically (counting, using 'simple' additive HE Scheme)
- Each party replaces set entries for entities not in their set by encrypted 0's
- Summing encrypted 1's and 0's creates intersection count

Extending concept: more parties)	4	1	2	3		P2				
ID	P1	P1 P2	P1P3	P1P2P3									$\langle /$	6	5	$, \ /$			
1	1	1	1	1									T		, '	1			
2	1	1	1	1	ID	P1	P1 P2	P1P3	P1P2P3	P2	P2P3			8	9				
3	0	0	0	0										$\overline{\ }$		F	53		
4	1	1	1	1	1	1	1 0	1	1 0	0	0	ID	P1	P1P2	P1P3	P1P2P3	P2	P2P3	Р3
5	1	1	1	1	2	1	1	1	1	1	1								
6	1	1	1	1	3	0	0	0	0	1	1	1	1	0	1 0	0 0	0	0 0	0
7	0	0	0	0	4	1	1 0	1	1 0	0	0	2	1	1	<mark>±0</mark>	1 0	1	<mark>±0</mark>	0
8	0	0	0	0	5	1	1	1	1	1	1	3	0	0	0 0	0 0	1	±0	0
9	0	0	0	0	6	1	1 0	1	1 0	0	0	4	1	0	1 0	0 0	0	0 0	0
					7	0	0	0	0	1	1	5	1	1	1	1	1	1	1
					8	0	0 0	0	0 0	0	0	6	1	0	1	0	0	0	1
					9	0	0 0	0	0 0	0	0	7	0	0	0	0	1	1	1
												8	0	0	0	0	0	0	1

Σ

P1 encrypt \rightarrow P2 replace \rightarrow P3 replace and sum \rightarrow P1 decrypt aggregates + broadcast

PPA using HE



Concept – key aspects

- Builds on PSI example
- All numbers are indistinguishable (not only 0 and 1)
- Enables passing encrypted fact data to other parties
- Parties filter / select rows conditionally based on own facts / data
- Other parties can manipulate facts 'blinded' under HE (e.g. replacing by a specific number or adding/multiplying etc.)
- Last party aggregates under HE

Example

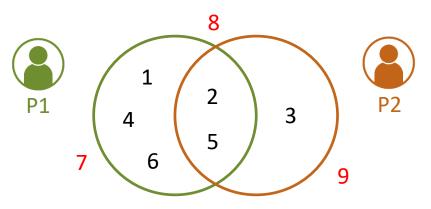
ID	P1: Income
1	1700
2	2300
3	0
4	1500
5	5200
6	6100

•	Can also be extended to
	parties > 2

- Any party can act as filter or aggregatable party
- Complex analytics require FHE scheme and/or multiple communication rounds

	Income sum	People count						
Σ	11300 👝	2						
Avg = Decrypt(11300) / 2								

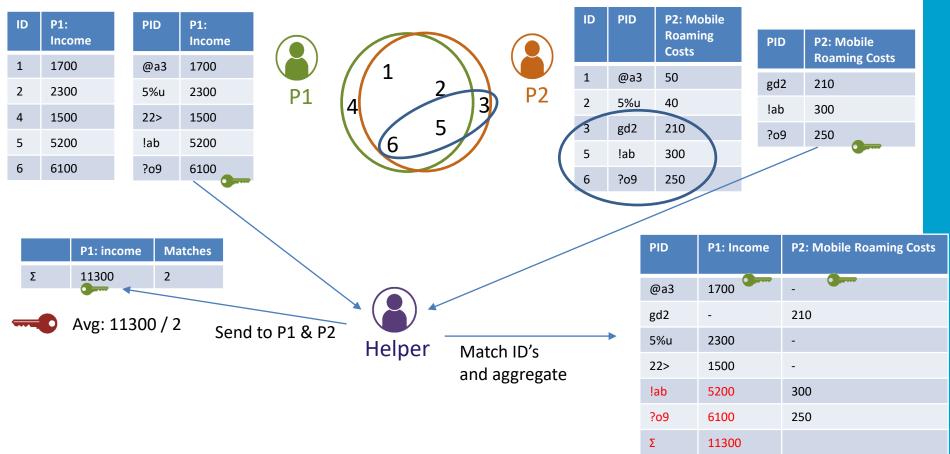
Calculate **average** income **for** people with mobile roaming costs > 200


ID	P1: Income	P2: Mobile Roaming Costs	P2: Filter (count)				
1	1700 0	50	0				
2	2300 0	40	0				
3	0 0	160	0				
4	1500 0	0	0				
5	5200	300	1				
6	6100	250	1				
Σ	11300		2				
Encrypted column!							

PPA using HE + helper party

Limitations

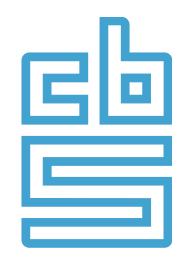
- Some population disclosure inevitable...
- Initial population should not be sensitive
 - Union of P1 and P2 (if both not sensitive)
 - P1 or P2 (if only P2 or P1 is sensitive)
 - Superset of P1 and P2 (if P1 and P2 sensitive: e.g. 'all people in country')
- But: larger population → lower performance (ciphertext expansion & data exchange, more computations etc.)
- What if P1 and P2 sensitive and superset not viable?? → Helper party


Concept – key aspects

- Data parties
 - Jointly create shared keypair
 - Filter and encrypt own data locally
 - Pseudonimize ID's
- Helper party
 - performs intersection + aggregate calculations
 - Sends encrypted aggregates back to data parties for decryption
- No party learns other population, only sizes
- Data parties should not collude with helper party

Calculate average income for people with mobile roaming costs > 200

Example



Thank you!

Questions?

r.schreijen@cbs.nl

Facts that matter