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1.  The Data 

1.1 Background 

The IMF Statistics Department assists member countries to implement the IMF’s Dissemination Standards 

Initiatives (SDDS Plus, SDDS, and e-GDDS). These standards require or recommend the dissemination of 

selected data through the country’s National Summary Data Page (NSDP) using the SDMX format. This 

project used data collected from NSDP of countries participating in e-GDDS, SDDS, and SDDS Plus. 

• Example of country file structure 

Descriptor INDICATOR BASE_PER 2013 2014 2015 2016 2017 

Nominal GDP by Activity ? ? 1432669.8984 1480521.3947 1315250.5834 1311248.3355 1405006.8341 

Agriculture, forestry and 
fishing 

? ? 
9223.0676 9468.2351 9746.3480 10175.8220 10721.0735 

• Example of CTS structure 

Code Full Descriptor Methodology 

Reference 

Sector - 

Name 

Topic - Name 

NGDPVA 

National Accounts, Activity, Memorandum Items, Gross 

Value Added, Nominal  

National 

Accounts Activity 

NGDPVAGA 
National Accounts, Activity, Memorandum Items, Gross 
Value Added, of which Government Activities, Nominal  

National 
Accounts Activity 

A_CPC21_0 

Economic Activity, Production, By Central Product 
Classification (CPC) Version 2.1, Agriculture, forestry and 

fishery products 

FAO SEEA 
AFF; CPC 

Version 2.1 

Economic 

Activity Production 

 

1.2 Data Expansion 

The f irst step of our work was to combine indicators descriptors, f rom the collected country files. The goal 

is to create Full Descriptors comparable to those already existing in the IMF’s CTS.  This was done by 

concatenating parent indicators descriptors following the hierarchy in the f ile (“parent1 descriptor, parent2 

descriptor, … , current indicator descriptor”). During the pilot study, since our main goal was to test the 

feasibly of such a solution (using machine learning to generate codes for non-coded indicators) the team 

focused on using f iles with a specific structure that simplified the creation of  descriptors with the full 

hierarchy and only using indicators with English descriptors. Our goal for this year’s work was to build on 

the results obtained last year and develop a generalized automated solution for coding economic and 

f inancial indicators available in the IMF. To achieve this, we started by looking for additional datasets for 

which users in the IMF are facing a similar coding issue and incorporate these new indicators during the 

development of our final solution. 

1.3 Feature Categories 

The augmented dataset led us also to reassess the features used for prediction. After a review exercise, 

features common to all datasets were highlighted, which resulted in creating categories for the features 

used. 
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- Mandatory features that must be available in a dataset. 

- Optional features that provide additional insights for better predictions, but without which the ML 

solution can still generate predictions. 

Mandatory Features Optional Features 

DESCRIPTOR TIMESERIES 

UNIT_MULT TIMESERIES_KEYS 

SECTOR BASE_PER 

METHODOLOGY DATA_DOMAIN 

 UNIT 

  

 

 

This data review work resulted in: 

1- An increase in the indicators used to train and test the model from around 40,000 indicators (during 

the pilot study) to over 115,000 indicators. 

2- Better clarity for our internal users, with guidelines on f iles structures to run code predictions and 

requirements for mandatory features.  

 

 

2. Model retraining 

As already mentioned, in the pilot study only a sample of countries and a sample of submission files with 

certain characteristics were used to train and test the models and generate predictions. This led to 

promising results overall.  However some indicators were systematically predicted in the wrong classes and 

this needed to be improved. 

In the new phase, the training dataset was improved to pre-classify some of the worst performing sectors. 

Such improvements included: 

- Identifying the sector (National Accounts, Economic Activity etc.) for each input entry based on the 

available information. 

- Augmenting the embedding space by adding dummy versions of certain features. 

However, none of these approaches seemed to improve much on the results f rom the pilot phase. Following 

on the work described previously on feature categories, a new approach was implemented based on using 

the minimum amount of features-engineering using only the 3 mandatory variables (indicator descriptor, 

sector, and methodology) as a baseline to improve on. In addition, and with the objective of having a 

functional tool for different users across the IMF, only a minimum amount of pre-processing was adopted 
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during this year’s work to ensure reproducibility for slightly dif ferent f ile structures. Some of  the 

characteristics dropped during the data processing in the pilot phase were kept: 

- Non-English descriptors. 

- Original hierarchy structure of the descriptor. 

- All types of submission files were kept (standard and non-standard). 

This led to a significant improvement in the results previously obtained and was mainly due to the increase 

in the data used to train the model (training data was increased 3.5 times). 

With this approach, we obtained better quality predictions using the same model and feature extraction 

techniques used in the pilot study (i.e., Nearest Neighbors using cosine similarity with Word2Vex, and R 

package fastrtext that implements Facebook’s FastText library.) The model of choice was “skipgram” with 

the default parameter configuration: 

vector dimension: 100, minn = 3 , maxn = 6 (i.e., take all the sub-words between 3 and 6 characters, 

which may have proved useful to handle typos or Spanish descriptors) 

Subsequent model re-trains will be conducted using new labeled data provided by f inal users of the tool 

f rom the list of predicted codes resulting from the current version of the model.  

3. Updated Results 

The expansion of the dataset used for training (i.e., “the training dataset”), in addition to work done on the 

feature selection (using only the few common mandatory features), resulted in an overall improvement in 

the prediction accuracy compared to the pilot phase. As mentioned earlier in the report the augmentation 

of  the embedding space was not a conclusive approach.  

Table 1 provides a comparison of the predictions’ accuracy across all indicator domains for each 

approach compared to the pilot phase by data domain. However, to be consistent with standard 

performance metrics, we also provide a summary of these in Table 2 and Table 3. It is important to note 

that the results in Table 2 differ f rom those in Table 1 not just in the aggregation by data domain but also 

in 2 other aspects: 

- Once the model is trained, we compute the predictions, that is, cosine similarities across vector 

representations, using unique pairs of text and labels (codes). This improves performance and 

accuracy. For instance, by keeping the original training dataset, multiple repetitions of the same 

code were returned as top predictions, so, if top 10 results were returned, a wrongly predicted 

code with 10 or more instances in the training data would be returned (wrongly) 10 times over.  

- Standard metrics are based on the confusion matrix formed by predicted and actual codes. For 

this, we only used the top predicted code based on cosine similarity as opposed to top 10 used 

for the pilot and Table 1. In the future we will incorporate a parameter which will allow users to 

control for the number of returned predicted codes for each new entry. 
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Table 1: Accuracy by data domains based on top 10 predicted codes for each entry from the entire 

testing dataset  
 Pilot Phase Phase 2 

DATA DOMAIN 
correct 
predictions 

total 
attempted 

Accuracy 
correct 
predictions 

total 
attempted 

Accuracy 

bop6 1,124 1,257 89% 3,603 3,768 96% 

1sr 535 536 100% 1,277 1,365 94% 

2sr 473 473 100% 1,189 1,264 94% 
iip6 408 417 98% 1,116 1,149 97% 

bop5 0 62 0% 621 743 84% 
dots 91 92 99% 706 706 100% 

fs1 142 154 92% 440 524 84% 

fs2 97 97 100% 446 499 89% 
fsd 67 68 99% 352 355 99% 

nag 0 14 0% 285 331 86% 

4sr 11 54 20% 276 279 99% 
met 0 9 0% 144 276 52% 

fas 178 186 96% 250 274 91% 
cpi 40 53 75% 194 221 88% 

Other common 136 333 41% 536 720 74% 
Other non-
common 

- - - 432 491 88% 

Total 3,302 3,805 87% 11,867 12,965 92% 

 

Table 2: A sample of classes (out of 5,979 total classes) performance metrics based on top predicted 

code for each out of sample entry from unique pairs of text and code (label) in training dataset 

cts_code Recall precision f1 

Class: txg 0.963 0.943 0.953 

Class: bfocdaonf_s_bp6 1.000 1.000 1.000 

Class: dumu 0.571 0.333 0.421 

Class: fodaif_nc 0.900 1.000 0.947 

Class: fs_hh_a 1.000 1.000 1.000 

Class: iapema_bp6 1.000 1.000 1.000 

Class: ggrs_g01 1.000 1.000 1.000 

Class: racfampa 1.000 1.000 1.000 

Class: ilopcma_bp6 1.000 1.000 1.000 

Class: iaocddcip_bp6 1.000 1.000 1.000 

Class: falfdf_fx 0.667 1.000 0.800 

Class: bfdleis_bp6 1.000 1.000 1.000 

Class: fsgdlc 1.000 1.000 1.000 

Class: pppi 0.949 0.474 0.632 

Class: befde_bp6 1.000 1.000 1.000 
Class: nf i 0.667 0.600 0.632 

Class: faldomo_nc 1.000 1.000 1.000 

Class: pcpiec 0.333 1.000 0.500 

Class: fofacflo_fx 1.000 1.000 1.000 

… … … … 
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Table 3: Average performance metrics from Table 2 

 

average_recall 92% 

average_precision 89% 

average_f1 87% 

overall accuracy 72% 

 

4. The R package 

In order to move to a production ready solution, the different programs had to be gathered within a same 
entity and def ine these as functions of a same package taking into account all dependencies. With the 
possibility of running Python code using R, and with the expertise of some team members in building R 
packages, it was decided to have the end-to-end process in an R package. 

The package represents a collection of functions to extract data from country files, process them and codify 
descriptors following the CTS coding logic based on NLP techniques.  It allows the user to process, clean 
and prepare data f rom country submission f iles as well as train the model to classify the extracted time 
series descriptors and predict CTS codes. The package also includes the code for the Shiny app and a 
function to launch the Shiny app from the package.   

Package details 

- Languages: the team used different programing languages to create the different functionalities 

of  the tool. Python is used to extract the data from the country file (fairly structured Excel files). R 

is used to build the rest of the pipeline and the Shiny app. CSS is used to define how HTML 

elements should be displayed and styled in the Shiny app. 

Figure 1: Percentage covered by programming language 

 

- Users’ profiles: the package was built having two types of users’ profiles in mind. 

o Developer: This would be the technical user interested in the backend and how the 

processing and cleaning is done as well as the intricacies of the end-to-end process and 

how the ML model functions. 

o Coder: This represents users interested in running the interface, developed as a shiny app 

and use it to upload new country submission files, run the predictions and download a 

version of the uploaded file with predicted CTS codes. 

- Package Structure: the package encapsulates the different steps the data would go through in 

our f inal solution to predict codes. The main functions and a description of these are listed in Table 

4 
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Table 4: List of main functions included in the R package 

 

Function Description 

cts_processdata.R 
Extract the data from the country submission f iles and process 

them in order to be ready to be used in the next steps of the 

pipeline. The f irst part of this process is run in Python. 

cts_processdata is called by the Shiny app as well to process 

the f ile uploaded by the user. 

cts_train.R 
Train the machine learning model to codify the extracted and 

processed time series descriptors and assign a CTS code. In 

this case the data also include the actual CTS code assigned 

to each descriptor in order to do model training. 

cts_predict.R 
Predict and assign CTS codes to new data using the model 

trained with cts_train(). 

cts_predict is called by the Shiny app as well to predict codes 

the f ile uploaded by the user. 

cts_validate.R 
Validate, using a combination of  metrics, the results of  the 

predicted codes.  

cts_validate requires as input the predicted codes by the model 

for each record as well as the actual known CTS codes. 

data.R 
A collection of data dictionaries exposed to the users of the 

package and the Shiny app and used throughout the process.  

run_ctsapp.R 
Launch the Shiny app from the package. 

app.R 
Shiny app. 

 

The overall pipeline and workflow of the package is illustrated in the figures 2a, 2b and 2c below. 

Figure 2a: Data Processing and Model Training 
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Figure 2b: Prediction and Model Performance 

 

Figure 2c: Prediction on New Data 

 

5. The User Interface 

The ultimate goal of this project is the build a tool that can be used by IMF staff working on attributing codes 

to non-coded indicators from country upload files and help speed up and automate this work. From a user’s 

perspective, having a solution that’s easy to use, requires minimal training and is as close as possible to 

their current process is a key factor in the success of such tool. To facilitate this, the team built an R-Shiny 

app allowing the user to interact with the dif ferent functionalities of the tool and generate predictions 

following the process shown below. 
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Figure 3: process pipeline when using the Shiny App 

 

The Shiny app was built using the following structure: 

- Introduction: this is the first page the user sees when running the app and it offers an overview of 

the application with a user guide or how to run it and a sample file to help understand the needed 

structure of the upload file and the fields expected by the application. 

- Upload: This page provides the user with the interface to upload a new file to be coded by the tool 

following the below steps: 

o Users upload their file into the App 

o The input is processed folowing the same processing steps used to extract and clean the 
training data used by the model 

o Check the mandatory f ields, making sure all mandatory f iels needed by the model are 

present in the uploaded data 

o Display the data in a table on the app if upload is successful 
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Figure 4: Upload screen of the Shiny App 

 

- Edit: This page offers to the user the possibilty to adujst the uploaded data before the coding runs. 
Cells are highlighted in red if an issue is detected: examples include missing values, unrecognized 
value for variables that can take only a fixed set of values, and so on. The addition of this step aims 
to potentially maximize the coding outcome by improving and/or adjusting the quality of the input 
data.  

Figure 5: Edit screen of the Shiny App 

 

 

- Classification: This page is where the user can run the calssification task and generate codes for 
the indicators from the uploaded file. Once the coding is run a new column displaying the predicted 
codes is added to the created table. In addition to the best matched code, the similarity score, 
assigned by the model to the best matched code and ranging f rom 0 (lowest) to 1 (highest), is 
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displayed. The color scheme associated with the similarity score is determined by Model similarity 
distribution threshold (green if  score is above threshold, yellow if  score is around rheshold, red 
otherwise). This threshold defines a point between 0 ands 1, with default value at 0.75,  over which 
the quality of the assigned code is considered accettable by the user. Assigned codes that don’t 
meet the threshold can also be not displayed in the table if the user prefers so.  

- Figure 6: CTS Classification screen of the Shiny App 

 

- Export: In this page, the user can export results of the run predictions. Thay can choose which 
columns to retain anf the export format of the file.  

- CTS reference: The CTS reference page offers the user the posibilty to refer to the CTS coding 

f rame directly from the App to search for specific codes or descriptors etc. 

 

6. Project management 

The project management aspect was a challenging one in our case, especially having different team 

members working on a number of  competing priorities and assignments. This led us to test dif ferent 

approaches to track the progress of the project as well as distribute the work amongst team members and 

ensure the delivery of a solution within the set deadline. 

- Azure DevOps:  A f irst approach was to test Azure DevOps to define the list of tasks and have a 

clear overview of the pending deliverables and assign these to different team members. Azure 

DevOps was rather straightforward to use, and allowed creating repositories, sharing and version 

control the files from the project. 

 

- GitHub: Although Azure DevOps provides the possibility to using Git for version control, we 

decided to shift to GitHub due to the familiarity of most team members. This was a key factor in the 

build of the R package underlying our production-ready solution. As mentioned earlier in this report, 

this project had different building blocks that were simultaneously implemented by different team 

members, and in order to aggregate all the work and build the R package the use of GitHub was 

key to successfully collaborate and simultaneously work on the different tasks, making sure that all 
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team members had access to the latest versions of the code. In addition to the version control 

aspect of it, GitHub allowed us to monitor the ongoing work through the issues log feature by 

creating and assigning new tasks, closing finalized ones and commenting on ongoing work. 

 

- Weekly Meetings: The team established a system of weekly meetings to discuss in more detail 

the project plan, ongoing tasks and pending issues. This was particularly helpful as we had many 

other high priority tasks outside of this project and having weekly meetings helped us to have a 

dedicated time for this project. In addition, these weekly meetings were the opportunity to 

redistribute work when needed based on each team member’s workload. 

 

- The Sprint: with the deadline approaching, the team felt the need to have dedicated working 

sessions to wrap up the work for this project. This is an approach we have briefly tested during the 

f irst year of  the Machine Learning Group and that generated f ruitful results. Accordingly, we 

organized hybrid sprint sessions during the f irst three weeks of  December 2021, both in person 

and online based on availabilities and preferences of different team members. During these three 

weeks the team scheduled 4-hour morning sessions dedicated to this project. During these 

sessions, each team member would work on their specific tasks with the opportunity to have 

brainstorming sessions, discuss specific issues, get feedback f rom other team members etc. We 

truly believe that this helped us a lot to f inalize the pending work and improve on some of  the 

already implemented functionalities. 

 

7. Next steps 
 

After the initial development of the R package and Shiny App, the next phase is to share and rollout the 

tool to a small set of internal users to test the functionalities and receive initial feedback on the overall 

user experience. This will be done by: 

- Sharing the app using an internal R Shiny server 

- Organize one-on-one sessions with users to present the app and get direct feedback. 

Beside sharing the tool and getting feedback from users for potential improvements, another future task 

the team would need to tackle is the maintenance and improvement/update of the model. This would be 

done by: 

- Consistently updating the training data with newly coded indicators after review by staff with 

coding expertise, to ensure the quality of the new added inputs. 

- Periodically retrain the model based on the updated training data. 

- Looking into improving the overall quality of predictions by updating the model parameters when 

possible. 

- Improving the CTS classification workflow in the Shiny app by allowing the user to review, accept 

or reject, and overwrite the assigned codes by the model directly in the App.  
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Annex 1: Domain names table 

Domain code Domain name CTS sector 

BOP Balance of Payments External 

BOP5 Balance of Payments (BPM5) External 

BOP6 Balance of Payments (BPM6) External 

EXD External debt External 

EXR Exchange rates External 

IIP International Investment Position External 

IIP5 International Investment Position (BPM5) External 

IIP6 International Investment Position (BPM6) External 

ILV1 Official reserve assets External 

ILV2 Template on International Reserves and Foreign Currency Liquidity  External 

MET Merchandise trade  External 

DOTS Direction of Trade Statistics External 

BCG Budgetary Central Government Fiscal 

CGO Central government operations Fiscal 

GGO General Government Operations Fiscal 

BGD Budgetary Central Government Gross Debt Fiscal 

CGD Central government debt Fiscal 

GGD General government gross debt Fiscal 

CBS Central Bank Survey Monetary and Financial 

ODC Other Depository Corporations Survey Monetary and Financial 

DCS Depository Corporations Survey Monetary and Financial 

OFS Other Financial Corporations Survey Monetary and Financial 

FSI Financial Soundness Indicators Monetary and Financial 

FAS Financial Access Survey Monetary and Financial 

INR Interest rates Monetary and Financial 

MSG Monetary and Financial Statistics Aggregates Monetary and Financial 

SPI Share price index Monetary and Financial 

NAG National Accounts - GDP Real 

CPI Consumer price indices Real 

LMI Labor Market Indicators Real 

EMP Employment Real 

UEM Unemployment Real 

WOE Wages/earnings Real 

IND Industrial Production Real 

POP Population Real 

PPI Producer price indices Real 

SOC Socio-Demographic Real 

X Not applicable Not applicable 

 


