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Our group at Statistics Finland

 Stats Finland’s departments were reorganized in
September 2020

* Digitalization services established, responsible for
« Managing and assisting with innovations
* Developing ML-based solutions

 Eight persons, half with ML in job description
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ML at Stats Finland

* Limited experience with ML
* A couple of rudimentary classification models in production
« Afew more cases investigated but have not made it to production

* Finland’s public sector policy: If a cloud service offers the
best service benefit and guarantee, it should primarily be
selected for new IT-solutions, provided no other barriers exist

. Our aim for 2021

Implement a generic platform in Azure allowing classification models to
be rapidly developed, put into production and reliably maintained

* Follow MLOps principles, automate as much as possible
* Deploy models for two classification cases to production
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”Garbage in, garbage out...”

* In the machine learning context, "garbage in..." means that
the ML model is only as good as your data

* Therefore, the data, which has been used for training of the
ML model, indirectly influence the performance of the whole
ML system

 Better understanding of “DS”-process could be the first step
in improving the performance of the ML model, how mature
IS your process?

 After good understanding of DS-process, automate it!
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”Quality in, quality out...”

Key conciderations: Ground Truth, Data Relevance,
Quantity of Data, Ethics
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Key conciderations: Categorical encoding, Dealing with
skewed data, Scaling, Bias Mitigation

Feature engineering: Feature extraction, Capturing Feature
relationships

Key conciderations: Missing values, Outliers, Un-
balanced data, Feature engineering

(Feature is an attribute used as input for the model to train, or
perhaps better definition: individual versioned and
documented data column (in a feature store) or even better definition --*)
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The sample of data
used to provide an
unbiased evaluation
of a final model fit
on the training
dataset

Used in model
quality evaluation
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Training set

» The sample of
data used to fit
the model
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Validation set

» The sample of data used to provide an
unbiased evaluation of a model fit on the
training dataset while tuning model
hyperparameters. The evaluation becomes
more biased as skill on the validation dataset
is incorporated into the model configuration
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Circumstances triggering retraining

* ML process easily ends up in struggling with all kind of
anomalies: decays, skews, drifts and biases...

* Model performance may be affected by numerous factors

 \What then?

+ Identify all those unwanted circumstances and what are the
factors behind them

* Improve the weak parts in your DS-process (improve the degree
of maturity of DS-process)

« Create metrics, monitors and build triggers and automate
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Multi Persona Data Science
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* Concept and picture are both from Gartner
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ML workflow could be something

like this? ssasseane
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