
Shared AI Services Hosting Application
Andrea Roberson

U.S. Census Bureau

Shared AI Services Hosting Application (SASHA)

Any views expressed are those of the author(s) and not necessarily those of the U.S. Census Bureau.

Annual Capital Expenditures Survey (ACES)

▪ Provides national-level estimates of annual capital investment in new and
used buildings, structures, machinery, and equipment by U.S. non-farm
businesses

lending money to commercial banks (fabricated response)

Source: https://www.census.gov/programs-surveys/aces.html

Content

Rec.
Anomaly (Outlier)

Detection

Personal

Asst.

Robotic

Control

Text

Classification

VWCreate

Caffe

Many applications and many models

Challenges of Prediction ServingChallenges of Prediction Serving

• Decouple applications from models and allow them to evolve
independently from each other

• The Frontend Dev perspective: focus on building reliable, low-latency
applications

• Provide stable, reliable, performant APIs to meet Service Level Agreements (SLAs)

• Scale system, hardware to meet application demands

• Oblivious to the implementations of the underlying models

• The Data Scientist perspective: focus on making accurate predictions

• Support many models and frameworks simultaneously

• Simple deployment and online experimentation

• (Mostly) oblivious to system performance and workload demands

SASHA Requirements

• Work done on the Annual Capital Expenditures Survey (ACES) API taught us how
to wrap ML scripts to provide high throughput and availability.

• We expect to see growth in the use of ML/AI in live instruments.

• We need to create a unified platform rather than one-offing everything.

• Goals for this platform:
• Deliver ml results as fast as possible
• Handle errors, monitoring, alerting, reporting and whatever else can be centralized
• Manage shared hardware efficiently and fairly
• Reduce time/labor for delivery of additional APIs to the platform
• Give more freedom and control to AI developers

• I/O control
• Configuration control
• CI/CD control

• Easily extendable with no service interruptions

What are we doing?

• API Server
• Main endpoint – Accepts/responds to HTTP requests, authenticates, logs, error

handling

• Admin Panel
• Register clients
• Manage settings
• View reports
• Run health checks and view health stats
• Test clients

• API Clients
• ML/AI scripts owned by various application areas

• API Customers
• Make API requests, consume API results

Components

• Fundamentally, a survey provides input to a python script to do ML stuff then return something
over a network. User enters ‘Truck’, ML responds ‘Equipment’

• After profiling, A/B testing, etc. We determined ML scripts were CPU limited and the largest
consumer of the CPU time was the deserialization of the model file(s) to python objects.

• Solution – keep it hot

• Inbox/Outbox design pattern
• The “API Customer” sends a post/get to “API Server”
• The “API Server” drops a job to inbox (json) and immediately and repeatedly starts checking the outbox
• The “API Client” is in a “while True:” looking for work in the inbox. It sees a job, processes it, then drops

another json file to the outbox
• The “API Server” sees the job in the outbox and returns to the customer

• Need to monitor health of daemonized python script – not a typical use case!
• Continuous health checks (every minute)
• Nightly Restarts
• Auto Spawning
• Zombie Checking
• Server Resource Monitoring

How does it work?

8

SASHA Example

GET requests
made by

Centurion using
HTTP protocol

http://aces.econ.census.gov/continuous/predict.php?
rtext=truck

Call the ‘Predict’
endpoint to retrieve

an AI resource on the
API

API responds with a
representation of the AI
resource in JSON format

Resource {
"ID":”001“

"RTEXT":”truck“
"Prediction":
”Equipment“
"Probability":

0.958
}

USER
Centurion

API AI
AIAI

Andrea
ESMD

