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Annual Capital Expenditures Survey (ACES)

▪ Provides national-level estimates of annual capital investment in new and 
used buildings, structures, machinery, and equipment by U.S. non-farm 
businesses 

lending money to commercial banks (fabricated response)

Source: https://www.census.gov/programs-surveys/aces.html
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Many applications and many models

Challenges of Prediction ServingChallenges of Prediction Serving



• Decouple applications from models and allow them to evolve 
independently from each other

• The Frontend Dev perspective: focus on building reliable, low-latency 
applications

• Provide stable, reliable, performant APIs to meet Service Level Agreements (SLAs)

• Scale system, hardware to meet application demands

• Oblivious to the implementations of the underlying models

• The Data Scientist perspective: focus on making accurate predictions

• Support many models and frameworks simultaneously

• Simple deployment and online experimentation

• (Mostly) oblivious to system performance and workload demands

SASHA Requirements



• Work done on the Annual Capital Expenditures Survey (ACES) API taught us how 
to wrap ML scripts to provide high throughput and availability.

• We expect to see growth in the use of ML/AI in live instruments.

• We need to create a unified platform rather than one-offing everything.

• Goals for this platform:
• Deliver ml results as fast as possible
• Handle errors, monitoring, alerting, reporting and whatever else can be centralized
• Manage shared hardware efficiently and fairly
• Reduce time/labor for delivery of additional APIs to the platform
• Give more freedom and control to AI developers

• I/O control
• Configuration control
• CI/CD control

• Easily extendable with no service interruptions

What are we doing?



• API Server
• Main endpoint – Accepts/responds to HTTP requests, authenticates, logs, error 

handling

• Admin Panel
• Register clients
• Manage settings
• View reports
• Run health checks and view health stats
• Test clients

• API Clients
• ML/AI scripts owned by various application areas

• API Customers 
• Make API requests, consume API results

Components



• Fundamentally, a survey provides input to a python script to do ML stuff then return something 
over a network. User enters ‘Truck’, ML responds ‘Equipment’

• After profiling, A/B testing, etc. We determined ML scripts were CPU limited and the largest 
consumer of the CPU time was the deserialization of the model file(s) to python objects. 

• Solution – keep it hot 

• Inbox/Outbox design pattern
• The “API Customer” sends a post/get to “API Server”
• The “API Server” drops a job to inbox (json) and immediately and repeatedly starts checking the outbox
• The “API Client” is in a “while True:” looking for work in the inbox. It sees a job, processes it, then drops 

another json file to the outbox
• The “API Server” sees the job in the outbox and returns to the customer

• Need to monitor health of daemonized python script – not a typical use case! 
• Continuous health checks (every minute)
• Nightly Restarts
• Auto Spawning
• Zombie Checking
• Server Resource Monitoring

How does it work?
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SASHA Example

GET requests 
made by 

Centurion using 
HTTP protocol

http://aces.econ.census.gov/continuous/predict.php?
rtext=truck

Call the ‘Predict’ 
endpoint to retrieve 

an AI resource on the 
API

API responds with a 
representation of the AI 
resource in JSON format

Resource {
"ID":”001“

"RTEXT":”truck“
"Prediction":
”Equipment“
"Probability":

0.958
}
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