Shared Al Services Hosting Application (SASHA)

Shared Al Services Hosting Application
Andrea Roberson
U.S. Census Bureau

Any views expressed are those of the author(s) and not necessarily those of the U.S. Census Bureau.

Annual Capital Expenditures Survey (ACES)

= Provides national-level estimates of annual capital investment in new and
used buildings, structures, machinery, and equipment by U.S. non-farm

businesses
11 8 CAPITAL EXPENDITURES Bil. Mil. Thou.
Report the following domestic capital expenditures data for the entire company. Example: if figure is
(Refer to page 4 of Instructions) $1,179,125,628.00 report —> | | 1 79 1 26
. Other Total
R CAPITAL EXPENDITURES Structures Equipment (Describe in ltem 3) | (Add columns 1+2+3)
ow {Rafar to Page 2 of Instructions) i) (] i3 i)
Bil.| Mil Thou. |[Bil.| Mil Thou. |Bil.| Mi. | Thou. [BiL| MiL Thou.
Capital expenditures for NEW structures and equipment
20 finclude major additions, alterations, and capitalized repairs
0 eXisting structures)
71 Capital expenditures for USED structures
and equipment
29 TOTAL capital expenditures
(Add Rows 20 + 21)
Total should equal
Item 1A, Row 11
=N List the items included in "Other.” Report in thousands of dollars. Furniture and fixtures, computers, capitalized computer software,
and motor vehicles should be reported as equipment. Leasehold improvements should be considered new structures or new equipment based
on what is being improved.
1) 2
Row — - . - -
Description of Capital Expenditures Bil. Mil. Thou.
lending money to commercial banks (fabricated response)

Source: https://www.census.gov/programs-surveys/aces.html

Challenges of Prediction Serving

Many applications and many models

Anomaly (Outlier) Content Personal Robotic Text
Detection Rec. Asst. Control Classification

sl NETFLIY

A4S
thealno /Do

Crepte ‘? .
APACHE d I
Spoﬁ(\z Caffe tensorfiow nq; ;net @KALDI

SASHA Requirements

* Decouple applications from models and allow them to evolve
independently from each other

* The Frontend Dev perspective: focus on building reliable, low-latency
applications

* Provide stable, reliable, performant APIs to meet Service Level Agreements (SLAs)
e Scale system, hardware to meet application demands

* Oblivious to the implementations of the underlying models

* The Data Scientist perspective: focus on making accurate predictions
e Support many models and frameworks simultaneously
* Simple deployment and online experimentation

* (Mostly) oblivious to system performance and workload demands

What are we doing?

Work done on the Annual Capital Expenditures Survey (ACES) API taught us how
to wrap ML scripts to provide high throughput and availability.

We expect to see growth in the use of ML/Al in live instruments.
We need to create a unified platform rather than one-offing everything.

e Goals for this platform:
* Deliver ml results as fast as possible
* Handle errors, monitoring, alerting, reporting and whatever else can be centralized
* Manage shared hardware efficiently and fairly

Reduce time/labor for delivery of additional APIs to the platform

Give more freedom and control to Al developers
* |/O control
e Configuration control
e CI/CD control

Easily extendable with no service interruptions

Components

API Server
* Main endpoint — Accepts/responds to HTTP requests, authenticates, logs, error
handling
Admin Panel
* Register clients
* Manage settings
* View reports
* Run health checks and view health stats
* Test clients

API Clients
* ML/AI scripts owned by various application areas

APl Customers
* Make API requests, consume API results

How does it work?

. FundamentaIIK, a survey provides input to a python script to do ML stuff then return something
over a network. User enters ‘Truck’, ML responds ‘Equipment’

» After profiling, A/B testing, etc. We determined ML scripts were CPU limited and the largest
consumer of the CPU time was the deserialization of the model file(s) to python objects.

e Solution — keep it hot

* Inbox/Outbox design pattern
* The “API Customer” sends a post/get to “AP| Server”
* The “API Server” drops a job to inbox (json) and immediately and repeatedly starts checking the outbox

* The “API Client” is in a “while True:” looking for work in the inbox. It sees a job, processes it, then drops
another json file to the outbox

* The “API Server” sees the job in the outbox and returns to the customer

* Need to monitor health of daemonized python script — not a typical use case!
* Continuous health checks (every minute)
* Nightly Restarts
* Auto Spawning
e Zombie Checking
* Server Resource Monitoring

Bt HAA AP EXAMPLE

GET requests Call the ‘Predict’
made by endpoint to retrieve
Centurion using an Al resource on the
HTTP protocol API
http://aces.econ.census.gov/continuous/predict.php?
Method '
Request
3 A
- Y
ParameterS APl responds with a

representation of the Al
resource in JSON format

Response

4 Response

Resource {

‘ "ID":”001“

"RTEXT":”truck”
"Prediction":

USER ' - API Pai ”Equipment” [M
_\Centurion J robgYY Andrea
AN

0.958
«

%

