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Background - Field Crop Reporting Series (FCRS)

@ Publishes final annual crop yield estimates towards end of each reference year.

@ Also publishes full-year crop yield predictions a few times during reference year.

@ In particular, contact farms in early July, ask them for their own full-year crop yield
predictions. Publishes resulting yield predictions in August.

Yield prediction question was phased out from July data collection for Manitoba in 2019
(to reduce cost/response burden).

e A model-based method (“baseline”) was used instead to generate the Manitoba/July
crop yield predictions.

@ July prediction ~~ early season prediction, deemed difficult.
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Crop Yield Prediction Project

Question :
Can ML improve upon Baseline?

Approach :
Try and compare a (large) number of combinations of
ML techniques and hyperparameter configurations

Main contribution :

Introduction of rolling window forward validation]
which mimics FCRS production setting, as validation protocol

T Schnaubelt, Matthias (2019) : A comparison of machine learning model validation schemes for non-stationary time series data, FAU Discussion Papers in
Economics, No. 11/2019, Friedrich-Alexander-Universitit Erlangen-Nirnberg, Institute for Economics, Niirnberg. http ://hdl.handle.net/10419/209136
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Background - Data
o Availability : (2000, . .., 2017) + (2018, 2019)

o Parcel-level

yield* := (crop production)/ (harvested area)

satellite (weekly, wks 16 — 31) : NDVI (normalized difference vegetation index)
crop insurance : insured crop type

geographical : Census Agricultural Region (CAR), eco-region, etc.

operational : seeded area, harvested area, etc.

o CAR-level

o weather (weekly, wks 18 — 31) : total precipitation, average soil water content, etc.

@ Derived variables of NDVI and weather time series
o totals, maxima, rolling averages, etc.

1

insured parcels only; 1 parcel = 160 acres ¥ measured in (number of bushels) / acre
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Underlying prediction/regression technique

Phase 1
XGBoost ‘ parcellvel
. within
(Linear) (eco-region x crop)
Phase 2
XGBoost ‘ parcellvel
. within
(Linear) (crop)
Question :

How to tune hyperparameters?
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Rolling Window Forward Validation - schematic
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@ Each point :

Preliminary results (year, h.config.)
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Next Steps

stcCropYield

@ R package

e two-phase XGBoost(Linear)
e rolling window forward validation
e persisted trained model for use in production

e documentation + sample code

@ Near completion

Canadia

Extend
mock production to :

RY2018, RY2019
RY2020

Compare against
baseline model
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Personne-ressource

Pour plus d’information,
veuillez contacter :

Keven Bosa

keven.bosaecanada.ca

613-863-8964

For more information,
please contact:

Kenneth Chu

kenneth.chuecanada.ca

613-852-7361

Cette présentation décrit des approches théoriques et ne présente pas des méthodes mises en ceuvre présentement a Statistique Canada.
This presentation describes theoretical approaches and does not reflect currently impl d methods at Statistics Canada.

P
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Background - NDVI

Average NDVI
Week 20, 2016
=

Average NDVI
Week 32, 2016
tign

-, 1
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gatstes - gtue Canad

Background - CARS, eco-regions

Manitoba Lamset Cenfomal Coni Proj

2016 Census Agricultural Regions
and Census Divisions.
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Background - Baseline model
(deployed for Manitoba/July 2019)

variable robust parcel-level
selection | + linear within
via Lasso regression (eco-region X crop)
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Rolling Window Forward Validation
o Take advantage of long history of available data (2000 — 2017 ).

e Mimic multi-year production runs :

To generate sequence(s) of yearly prediction errors that would have been
obtained for each candidate strategy had it been deployed in production in the past.

o Key design features : For each (ML method, hyperparameter configuration ),

e perform separately training/validation for consecutive reference years,
o for each validation year, train a model based on data from strictly preceding years,
o compute prediction errors for the trained model based on data from the validation year.

Compare the (ML method, hyperparameter configurations)’s based on prediction
errors.
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Tuning objective function

Across-validation-year average of

( harvested-area-weighted )

average of the &’s

where

e ( within-year (ecoregion, crop )-level )
s =

relative errors of crop production

Reminder : crop production = yield X harvested area
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Tentative performance metrics

(y,r,¢) = (year, eco-region, crop) and ( m, h) = (ML method, hyperparameter configuration) :

Crop production for (y,r, ¢) and predicted crop production for (y,r,c) and (m, h) :

crop harvested =(y,m,h) (m, h)-predicted harvested
P(y) — ™ 2 = X
e Z yield I area I ? e Z crop yield I area I

L€ (ysr:6) L€ (y;r50)
Production-induced relative error z-:syc’ ™h) and weight ws,yc) for (y,r,c), and number N &) of nonzero weights for y:
m,h m,h
SSYCm ) ‘P(ym ) P(y) ’/ Pr(J‘/? , WS%) — PS,? Z P{(yg , Z s }
(€0 (£ \ee”

Production-weighted relative error and standard deviation for (y, m, h) :

N 2
wErr(y, m, h) = Z w(y> (y’m h), wSd(y, m, h) = | ——- Z wéyg - (séy’(m’h) — wErr(y, m, h))

=
(&0 N =1
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Prototype results

XGBoost(Linear)

(Oé, )\weightsa Abias ) = ( 19,19, 19)
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Canadi

@ Validation Year : 2017
@ Training data : 2012, ..., 2016.
@ Each point : crop

@ Absolute value of relative error :

e Canola: 18.77%
o Hard red spring wheat : 21.09%
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Prototype results

@ Each point :
0.51 (year, method, h.config.)

@ Red : Baseline
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Prototype results

XGBoost(Linear) with
125 (OL, )‘weightsv )‘bias )’S

@ Each point : (method, h. config.)
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