Keven Bosa, Kenneth Chu

Section des méthodes et de la qualité, DScD Methods and Quality Section, DScD HLG-MOS, UNECE ML Virtual Sessions October 15, 2020

Deploying Machine Learning Techniques for Crop Yield Prediction

Background - Field Crop Reporting Series (FCRS)

- Publishes final annual crop yield **estimates** towards **end** of each reference year.
- Also publishes full-year crop yield **predictions** a few times **during** reference year.
- In particular, contact farms in early July, ask them for their own full-year crop yield predictions. Publishes resulting yield predictions in August.

Yield prediction question was phased out from July data collection for **Manitoba** in 2019 (to reduce cost/response burden).

- A model-based method ("baseline") was used instead to generate the Manitoba/July crop yield predictions.
- July prediction \rightsquigarrow early season prediction, deemed difficult.

Crop Yield Prediction Project

Question:

Can ML improve upon Baseline?

Approach:

Try and compare a (large) number of combinations of ML techniques and hyperparameter configurations

Main contribution:

Introduction of rolling window forward validation, which mimics FCRS production setting, as validation protocol

[†] Schnaubelt, Matthias (2019): A comparison of machine learning model validation schemes for non-stationary time series data, FAU Discussion Papers in Economics, No. 11/2019, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics, Nürnberg. http://hdl.handle.net/10419/209136

Background - Data

- Availability: (2000, ..., 2017) + (2018, 2019)
- Parcel-level[†]
 - yield[‡] := (crop production) / (harvested area)
 - satellite (weekly, wks 16 31) : NDVI (normalized difference vegetation index)
 - crop insurance : insured crop type
 - geographical: Census Agricultural Region (CAR), eco-region, etc.
 - operational : seeded area, harvested area, etc.
- CAR-level
 - weather (weekly, wks 18 31): total precipitation, average soil water content, etc.
- Derived variables of NDVI and weather time series
 - totals, maxima, rolling averages, etc.

[†]insured parcels only; 1 parcel = 160 acres

[‡] measured in (number of bushels) / acre

Underlying prediction/regression technique

Phase 1

```
XGBoost | parcel-level within (eco-region \times crop)
```

Phase 2

```
XGBoost | parcel-level within (crop)
```

Question:

How to tune hyperparameters?

Rolling Window Forward Validation - schematic

Preliminary results

- Each point : (year, h.config.)
- Red : Baseline mock production errors
- Orange: XGBoost/rwFV mock production errors
- Light gray : XGBoost(Linear) with 196 $(\alpha, \lambda_{\text{weights}})$'s
- Training window : five years
- Validation window :
 five years

Next Steps

stcCropYield

- R package
 - two-phase XGBoost(Linear)
 - rolling window forward validation
 - persisted trained model for use in production
 - documentation + sample code
- Near completion

Extend mock production to : RY2018, RY2019 RY2020

Compare against baseline model

Personne-ressource

Pour plus d'information, veuillez contacter :

For more information, please contact:

Keven Bosa

keven.bosa@canada.ca

613-863-8964

Kenneth Chu

kenneth.chu@canada.ca

613-852-7361

Background - NDVI

Background - CARS, eco-regions

Background - Baseline model

(deployed for Manitoba/July 2019)

$$\left(\begin{array}{c} \text{variable} \\ \text{selection} \\ \text{via Lasso} \end{array} \right) + \left(\begin{array}{c} \text{robust} \\ \text{linear} \\ \text{regression} \end{array} \right) \left(\begin{array}{c} \text{parcel-level} \\ \text{within} \\ \text{(eco-region} \times \text{crop)} \end{array} \right)$$

Rolling Window Forward Validation

- Take advantage of long history of available data (2000 2017).
- Mimic multi-year production runs :

To generate **sequence(s) of yearly prediction errors** that would have been obtained for each candidate strategy had it been deployed in production in the past.

- Key design features : For each (ML method, hyperparameter configuration),
 - perform separately training/validation for consecutive reference years,
 - for each validation year, train a model based on data from strictly preceding years,
 - compute prediction errors for the trained model based on data from the validation year.

Compare the (ML method, hyperparameter configurations)'s based on prediction errors.

Tuning objective function

Across-validation-year average of

where

$$\mathscr{E}$$
's := $\left(\begin{array}{c} \text{within-year (ecoregion, crop)-level} \\ \text{relative errors of crop production} \end{array}\right)$

Tentative performance metrics

(y, r, c) = (year, eco-region, crop) and (m, h) = (ML method, hyperparameter configuration):

Crop production for (y, r, c) and predicted crop production for (y, r, c) and (m, h):

$$P_{r,c}^{(y)} \ := \ \sum_{l \,\in\, (y,r,c)} \left(\begin{smallmatrix} \operatorname{crop} \\ \operatorname{yield} \end{smallmatrix} \right)_{l} \,\times \, \left(\begin{smallmatrix} \operatorname{harvested} \\ \operatorname{area} \end{smallmatrix} \right)_{l}, \qquad \widehat{P}_{r,c}^{(y,m,h)} \ := \ \sum_{l \,\in\, (y,r,c)} \left(\begin{smallmatrix} (m,h)\text{-predicted} \\ \operatorname{crop yield} \end{smallmatrix} \right)_{l} \,\times \, \left(\begin{smallmatrix} \operatorname{harvested} \\ \operatorname{area} \end{smallmatrix} \right)_{l}$$

Production-induced relative error $\varepsilon_{r,c}^{(y,m,h)}$ and weight $w_{r,c}^{(y)}$ for (y,r,c), and number $N^{(y)}$ of nonzero weights for y:

$$\varepsilon_{r,c}^{(y,m,h)} \ := \ \left| \ \widehat{P}_{r,c}^{(y,m,h)} \ - \ P_{r,c}^{(y)} \ \right| \ \left/ \ P_{r,c}^{(y)} \ , \qquad w_{r,c}^{(y)} \ := \ P_{r,c}^{(y)} \ \left/ \ \sum_{(\xi,\zeta)} P_{\xi,\zeta}^{(y)} \ , \qquad N^{(y)} \ := \ \sum_{(\xi,\zeta)} \mathbb{1}_{\left\{w_{\xi,\zeta}^{(y)} > 0\right\}}$$

Production-weighted relative error and standard deviation for (y, m, h):

$$\operatorname{wErr}(y, m, h) := \sum_{(\xi, \zeta)} w_{\xi, \zeta}^{(y)} \cdot \varepsilon_{\xi, \zeta}^{(y, m, h)}, \qquad \operatorname{wSd}(y, m, h) := \sqrt{\frac{N^{(y)}}{N^{(y)} - 1}} \cdot \sum_{(\xi, \zeta)} w_{\xi, \zeta}^{(y)} \cdot \left(\varepsilon_{\xi, \zeta}^{(y, m, h)} - \operatorname{wErr}(y, m, h)\right)^{2}$$

Prototype results

- Validation Year: 2017
- Training data : 2012, . . . , 2016.
- Each point : crop
- Absolute value of relative error :
 - Canola: 18.77%
 - Hard red spring wheat : 21.09%

Prototype results

- Each point : (year, method, h.config.)
- Red : Baseline
- Light gray : XGBoost(Linear) with 125 $(\alpha, \lambda_{\text{weights}}, \lambda_{\text{bias}})$'s
- Included :

Top 7 crops (by parcel count)

Training window : five years

Prototype results

XGBoost(Linear) with 125 (
$$\alpha$$
, λ_{weights} , λ_{bias})'s

- Each point : (method, h. config.)
- Red : Baseline
- Light gray :

XGBoost(Linear) with 125
$$(\alpha, \lambda_{\text{weights}}, \lambda_{\text{bias}})$$
's

• Included:

Top 7 crops (by parcel count)

• Training window : five years