"On repairing certain big data sets using KNN"

Shaila Sharmeen, PhD Intern, Australian Bureau of Statistics
Under the Supervision of Dr Siu- Ming Tam,
Ex-Chief Methodologist, Australian Bureau of Statistics
Honorary Professorial Fellow, University of Wollongong, Australia

Motivation

- To address the representativeness of Big Data by using mass imputation
- To improve small area estimation using Big data
- To allow for optimum survey estimation in multi-purpose surveys by
 - applying the machine learning Algorithm for the prediction (imputation)
 - by minimising the prediction error and
 - by keeping the relationship between response variables intact

Problem Description

- let, U is the finite population
- B is the big data sample
- A is the survey data sample
- C is the set in U, but not in B

- predict the data points in set C in such a way that the totals of predicted values will match some pre-determined control total eg the Regression Data Integration (RDI) total as described in the "Mining for the New Oil for Official Statistics" paper by Siu-Ming Tam; and
- maintain the relationship between the response variables.
- For this project, we assume B has no measurement errors, when compared with A
- We illustrate our methods using a simulated data set

Simulating the Data

• 1000 data points in U with 6 auxiliary variables X and 6 Response variables Y as outlined below:

Auxiliary variables
x1 ~ uniform (0,1)
x2 ~ normal (u2, var(x2))
x3 ~ Bernoulli(p=0.5)
x4 ~ Bernoulli (p=0.25)
x5 ~ uniform (0,1)
x6 "geographic identifier" : split x1 into quartiles to create 4 "geographic areas"

Name of the Response variable	Description	Nature
у1	Normal distribution	Continuous
y2	More complex regression	Continuous
у3	More complex regression with positive skew	Continuous
y4	A Bernoulli Trail with probability of Success related to geographical area(i.e: whether pineapples are grown indicator)	
y5	A Mixture model- (i.e: if the farm grows pineapples – the amount is given by a normal distribution)	Continuous
у6	Coin Toss-	Categorical

Source: Feasibility Simulation Study of regression Data Integration and Constrained Imputation, Susan Shaw, Susan Fletcher, December 2019, ABS

Simulating the Data

- Set A: Sample A or the 'survey' fixed at 25% of population size (250 data points)
- Set B: **not missing at random**, a true bias scenario \rightarrow 607 data points

No units to sample	x1<0.5	x1>=0.5						
x2 <u2< th=""><th></th><th colspan="7">80%, if y1>mean y1, twice as likely to be sampled Suppose, X data points satisfied this condition, we will take 809</th></u2<>		80%, if y1>mean y1, twice as likely to be sampled Suppose, X data points satisfied this condition, we will take 809						
	(156 data points)	of them—S So, n1+n2=S and n1/N1= 2. n2/N2 N1= no.of data points where y1>mean Y1 N2= number of data points where y1<= mean Y1 (199 data points)(n1=25,n2=174)						
x2>=u2	70% (158 data points)	35% if y1>mean y1, twice as likely to be sampled (94 data points)(n1=12,n2=82)						

Source: Feasibility Simulation Study of regression Data Integration and Constrained Imputation, Susan Shaw, Susan Fletcher, December 2019, ABS

KNN Algorithm steps

- We will use the KNN algorithm to predict the missing data points so that the control total and the predicted total will remain the same.
- Find K such that the prediction error for the 6 response variables as a set is smallest.
- Divide A into training and test data set
- Test performance of K based on accuracy of prediction measures
 - After applying feature selection where needed
- We use:
 - the HasD distance metric to find the NN
 - RMSE, f1 score for the accuracy metric for continuous and categorical data respectively.

Optimum K Determination for continuous variables for individual response variables

Y1 : Optimum k: 15

RMSE: 0.52455

Y2: Optimum k: 6

RMSE: 0.45977

Optimum K (Categorical Variables)

Y4 :Optimum k=5

F1 Score 0.60

Y6: Optimum k=19

F1 Score 0.57242

Feature Selection

- Optimisation curves for Y3, Y4 and Y6 are not entirely satisfactory so feature selection was carried out
- Different set of features to obtain lowest RMSE or Highest f1 score
- Graphs are generated for these different set of features
- For Y3→ x1,x2,x3,x4,x6(RMSE- 1.47)
- For Y4→x2,x3,x4,x5(f1 score -0.64)
- For Y6 \rightarrow x1,x5 (f1 score -0.62)

APR Intern ABS, 2020

Why do we need Optimum K for the set of 6 response variables?

- Want same donors for all 6 response variables, so the relationship between the response variables are maintained I call this "all in" donation
- We cannot have different K's for different response variables, given the "all in" donation condition. Need to find one K that gives the highest prediction accuracy for all 6 variables – akin to local maxima and global maxima
- Assess the global prediction accuracy with the range of Ks for the local maxima
- Rescaled Error (RE)= $\frac{\sqrt{(y_m \bar{y})^2/\sqrt{n}}}{\bar{y}}$ where $y_m = y_i \hat{y}_i$
- Loss from not using local optima = |kth rescaled RMSE- optimum rescaled RMSE|
- Total loss for the set of 6 response variables = y1 rescaled RMSE diff+ y2 rescaled RMSE diff + y3 rescaled RMSE diff - y4 f1 score diff+ y5 rescaled RMSE diff - y6 f1 score diff

Optimum K Determination: Local loss = abs (kth rescaled RMSE- optimum rescaled RMSE)

Variable Name																					
RMSE/f1 score	K=6 diff	K=7	K=8		К=9	K=10	K=11	K=12	K=13	K=14	K=15	K=16	K=17	K=18	K=19	K=20	K=21	K=22	K=23	K=24	K=25
Y1 0.52455				35	25	29	7.7	13	17	81		62	82	44	92	75	19			28	01
	0.0234	0.0141		0.010435	0.009125	0.009559	0.003945	0.003013	0.000917	0.001581	0	0.002162	0.000478	0.002544	0.003365	0.005675	0.005219	0.0057	0.0057	0.007228	0.007601
Y2 0.45977		88		88	81	74	ږ	88	31	47	88	88	98	33	88	6	71	35	73	54	88
	0	0.002428		0.004838	0.012418	0.007474	0.008656	0.007958	0.010831	0.011247	0.020698	0.023038	0.031286	0.037003	0.043168	0.05259	0.057217	0.061105	0.070623	0.078454	0.083828
Y3 1.47136	6			10	_	56	16	36			37	_	75	13	75	75	55	99	33	75	88
	0.00519	0.0045		0.00295	0.00207	0.000226	0.002746	0.001936	0.0014	0	0.000437	0.00231	0.003542	0.002313	0.003542	0.002567	0.004655	0.004166	0.003163	0.005267	0.005088
Y4 0.64069																					
	0.15944	0.15944	0.15944		0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944	0.15944
Y5 1.73107	0	6		6	Н	6	σ	4	н	æ		6	4	œ	1	æ	4		6	0	
	0.099439	0.155879		0.154329	0.130851	0.118109	0.108689	0.146031	0.171081	0.171923	0.16405	0.116489	0.130784	0.130778	0.080811	0.081093	0.040994	0.04246	0.011589	0.024759	0
Y6 0.62272	0.03529	0.10471		0.10263	0104718	0.14147	0.16520	0.15596	0.17766	0.16231	0.11929	0.15596	0.20111	0.21861	0.11784	0.16997	0.18090	0.18898	0.16773	0.20179	0.16773

Optimum K Determination:

	K=6 diff	K=7	K=8	К=9	K=10	K=11	K=12	K=13	K=14	K=15	K=16	K=17	K=18	K=19	K=20	K=21	K=22	K=23	K=24	K=25
Total																				
Loss																				
	-0.03134	0.017562	0.013112	-0.00498	-0.02407	-0.0354	-0.0005	0.024789	0.025311	0.025745	-0.01544	0.00665	0.013198	-0.02855	-0.01751	-0.05135	-0.04601	-0.06836	-0.04373	-0.06292

Total= y1 rescaled RMSE diff+ y2 rescaled RMSE diff + y3 rescaled RMSE diff - y4 f1 score diff+ y5 rescaled RMSE diff - y6 f1 score diff

 $K=12 \rightarrow Lowest Total$

We also use a procedure to align the predicted total to the RDI total, by using a weighted sum of NNs

	Old prediction using mean	New Prediction using wi
Difference of Y1 total(actual total- predicted total)	-3.73625431	-6.02540240e-12
Difference of Y2 total(actual total- predicted total)	23.95503429	-7.04858394e-12
Difference of Y3 total(actual total- predicted total)	-1.72088161	-4.04725142e-11
Difference of Y4 total(actual total- predicted total)	4.83333333	-1.45661261e-13
Difference of Y5 total(actual total- predicted total)	13.27609791	-6.25277607e-13
Difference of Y6 total(actual total- predicted total)	-14.58333333	-1.13686838e-12

Box Plots

RDI KNN predictors

Original data points

Thank You All.