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Quality Framework for Statistical Algorithms

Quality dimensions
1. Explainability <
Accuracy
Reproducibility

Timeliness

A

Cost effectiveness



What

The degree to which a human can understand how a prediction is made
by a statistical algorithm using its input features
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Not
* mechanical working
* interpretability



Trade-off

More data
More complex algorithms Less explainable
Lower prediction error




Nuance

Explainability

* Deep decision tree

e 1

Ny

Statistical model

(e.g. regression, ANOVA)
Machine
learning

Machine learning

(e.g. SVM, deep NN)
Statistical

model

* Deep NN with few features

Complexity

* GLMM with transformed features and higher-order interactions



Why

Computer says * Trust
O no !oan * New insights
O NO INnsurance
o not a pedestrian

e Safeguard

O no carcinoma * Fair, Accountable, Transparent,
o it’s your face Ethical (FATE) Al

o buy this

o read this _

o check this record . ﬂﬂMl’“TEESMS NO!

./

o use this imputation -§
O ... -

Little Britain



How

* Feature importance
* Individual conditional expectation
* Partial dependence plot
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Goldstein et al. 2014



How (continued)

e LIME

* Shapley value

* Counterfactual

* Adversarial example
* Influential instance
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Ribeiro et al. 2016



Sum up

* Explainability as important as prediction error
* Need

o less driven by use of ML
o more by big data allowing for increased complexity

e Active field of research
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