GENERIC PIPELINE FOR PRODUCTION OF OFFICIAL STATISTICS USING SATELLITE DATA AND MACHINE LEARNING

InKyung Choi (UNECE)

WHAT IS IT?

* In collaboration with INEGI ** Work in progress

CHALLENGES

Data is big and different

Capability not in place

Institutional arrangement

Lack of generalized approach

CHALLENGES

- Lack of understanding about process needed to use satellite data for
 - statistical production
- Unclear scope and boundary of works
- No common reference points to link

GENERIC PROCESS MODEL

Generic process model describes high-level activities that need to be followed to achieve a certain objective

Provides **common language** that facilitate communication and sharing knowledge within and between organisations

Business understanding

- Establish problems to be solved
- Identify satellite and groundtruth data to address the problem
- Translate the problem into statistical problem

Data collection and processing

- Obtain ground-truth data
- Obtain satellite data
- Integrate ground-truth data with satellite imagery data
- Define features and generate a dataset to be used for analysis

Modeling and prediction

- Decide ML methods and validation method
- Train ML and test
- Evaluate
- Apply model to un-labelled data
- Evaluate using external source

Dissemination and evaluation

- Publish the output
- Evaluate the work process

Modelling crop yield (Statistics Canada)

- Until 2015, the survey was conducted at six time points throughout the year: March, June, July, September, November and December
- From 2012-13, started collaborating with EC) on a model development
- In 2016, September estimates were replaced by this model-based estimates

Business understanding

- Predict crop yield for province/country level
- Satellite data (NOAA), history crop yield data, agroclimatic data
- Regression problem with Census Agricultural Region (CAR) as unit of analysis

Data collection and processing

- Crop yield/weather data (EC)
- Normalized Difference
 Vegetation Index (NDVI)
- Integrate all at CAR level
- Each CAR has 28 years of data and 80 explanatory variables.

Modeling and prediction

- Linear regression/LASSO model
- Relative difference
- LASSO selected
- Subject-matter experts also review the results to identify any questionable estimates.

Dissemination and evaluation

 Acceptable level of quality to publish, e.g. minimum of 12 years of historical survey data

THANK YOU!

(MORE DETAILS IN PILOT STUDY REPORT)