

Natural Language Processing for Economic Activity and Occupation

- To research the extent to which NLP can be incorporated in the current coding production-process:
 - Reduce the human-assisted workload
 - > Reduce the timing
 - > Matain or improve the quality
 - > The hardest ones: Economic Activity, Occupation

Current Coding Process = Ground Truth

Automatic Coding

- records
 - > Features:
 - {Ocupation: 'COCINERO DE ANTOJITO MEXICANO'}
 - {Task: 'PREPARAR VENDER DE ANTOJITO MEXICANO EN LOCAL'} {Business activity : 'PREPARAR VENDER DE ANTOJITO MEXICANO
 - EN LOCAL AL PUBLICO EN GENERAL'
 - {Company name: 'HUARACHE MIMI'}
 - 13 aditional items: academic level, company size,...
 - > Variable to clasify (either Economic Activity or Occupation): {7221}
 - Hierarchical code: first two digits account for the sector

2018 National Household Income and Expenditure Survey (ENIGH). 158k coded

- >> Ortographic correction
- >> Lemmatization
- Stemming

Q-grams (n-letter sequence) and N-grams (n-word sequence)

- Based on our experience instead of a library (e.g. python)
- Same process applied to both current coding and ML coding

Two TFiDF matrices (each one of 30 000 columns):

- > 2-word sequence
- > 6-letter sequence
- >> Concatenate the two matrices into one of 60 000 columns + 13 auxiliary variables

Ensemble ML

>> ML algorithms used:

- > SVM (best accuracy among all)
- > Logistic regression
- > Random Forest
- > Neural Networks
- > XGBoost
- > K-NN
- >> The final assigned code is made by a voting process:
 - > Equal weights for each ML-method call
 - > Unequal weights (try and error)

Two sets: Training (75%) and Test (25%). The following are based on the test set

Economic Activity (157 classes)

	Accuracy	Precision	Recall	F1
Ensemble with equal weights	0.8905	0.6925	0.6149	0.6365
Ensemble with different weights	0.8921	0.6767	0.6420	0.6512

Occupation (461 classes)

	Accuracy	Precision	Recall	F1
Ensemble with equal weights	0.8447	0.6441	0.5384	0.5639
Ensemble with different weights	0.8505	0.6437	0.5637	0.5831

Accuracy vs records coded automatically (percentage)

Análisis desagregado - SCIAN

Accuracy vs number of records (log), by code

Análisis desagregado - SCIAN

- The first two digits for each code (cla belongs to:
 - > 7751, 7755: same sector
- » Definitions:
 - Within-sector error: when the ML-algorithm codes a record it does it wrong, but the code it assigns does belong to the true sector: 4431 (real) vs 4434 (ML coding)
 - Between-sector error: when the ML-algorithm codes a record it does it wrong, and also the code it assigns does not belong to the true sector: 4431 (real) vs 3178 (ML coding)

>> The first two digits for each code (class) represent the sector which the code

Economic Activity

Two-stage Automatic Coding

>> First Stage:

- > Develop a SVM model on the training set in which we try to predict the Sector based on the textual features
- Apply the above model to predict the Sector for the test set: predicted sector
- Second Stage:
 - Develop a SVM model on the training set in which we try to predict the Class (4 digits) based on the following features: text + real_sector
 - > Apply the above model to predict the Class for the test set, based on the following features: text + predicted_sector (first stage)

>> We have not developed an ensemble algorithm for this two-stage approach

Economic Activity

	Accuracy	Precision	Recall	F1
One stage (6-grams, 2-words)	0.8188	0.5353	0.5918	0.5531
Two stages (6-grams, 2-words)	0.8312	0.5786	0.5730	0.5648

Accuracy	Precision	Recall	F1
0.8793	0.6372	0.6760	0.6511
0.8774	0.6600	0.6452	0.6443

Occupation

- Try state-of-the-art NLP methods for vectorizing
- >> Measure the performance on a new wave of records (ENIGH 2020)
- >> Develop a framework in which ML can be a part of the whole coding process and be subjected to quality measure

What is next

Conociendo México

01 800 111 46 34 www.inegi.org.mx atencion.usuarios@inegi.org.mx

F INEGInforma