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Pilot Study

NAICS and NOC Models and Journey to Production
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Pilot Study Overview

» Objective: Develop machine learning models to code the North American Industry
Classification System (NAICS) and National Occupational Classification (NOC).

« CCHS: Implementation of NAICS and NOC models in production
» Models: FastText (approved for use)
« Requirement: Error rate below 5 % (= human coders)
« Quality Control: Confidence level, by class
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System Terminology

G-Code: Generalized coding tool, Coding and Corrections Environment (CCE):
includes word-matching and ML Coding platform, which integrates automated
(FaStTeXt, XGBOOSt) and manua| Coding
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Transition of Coding Platforms

2018: Previous System

Data » 10CS ——> Manual
2019-Q1: Manual Data — — CCE —— Manual
2019-Q2: Word-Matching Data — + G-Code ———> CCE ——— Manual
2019-Q3,4: ML (temporary) Data — » G-Code —x—> CCE —— Manual
2020: ML (upcoming) Data ——» G-Code —— CCE —— Manual
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Présentateur
Commentaires de présentation
Presentation goal: the evolution of this study inside the organization
Cycles of development/quality assurance - release(bugs)/production
2019-Q1: Transition from IOCS to CCE: parallel runs
2019-Q2: Word-matching for NAICS and NOC (~20% autocoding per, 5% overall)
2019-Q3,4: StatCan approval of using Fasttext in G-Code, CCE was not able to consume results
2019-
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Pipeline Flow of Records

* Records which did not obtain a high enough
confidence score, to ensure to ensure an
overall 95% accuracy for both classifications, |
were sent to be interactively coded |."'

Interactive: Confidence Threshold|

« After applying the threshold models were
able to predict a NAICS code in 46.5% of
records and a NOC code in 34.2% of
records.

* Records with received both a NAICS and
NOC code (23.5%) were sent for
Methodology QC

Slelisies | =hlbiage Delivering insight through data for a better Canada

Machine-Learning: Non-QC

Interactive: QC Sample

Interactive: QC by Class

23.5% Machine-
Learning before QC
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. Models run on a teSting datasets of 157,527 NOC records Methodglogy Determined Quality Control on Machine-Learping
and 134,911 NAICS records from multiple surveys including:
LFS, JVWS, CCHS, CHMS, CHSCY, SFS. e
* QC by Class: Classes which had an error rate above 10% cf‘:;j';‘s;;g:?;e
for NAICS and 15% for NOC, when run on the testing il
dataset, were flagged for interactive coding.
splitting by
« QC Sample: Given a margin of error of 0.02, where p' is CIEEZ::::F;C
0.05, we calculated the quality control sample size as T e
follows:
Z§os(P(1 =D
Margin of Error =j 0.5 T(l p)) acsample
« Overall Error in production »
» Excluded by class: 10.5% o
« QC Sample: 4.2%
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Présentateur
Commentaires de présentation
Multiple surveys including: Labour Force Survey (LFS), Job Vacancy and Wage Survey (JVWS), Canadian Community Household Survey (CCHS), Canadian Health Measures Survey (CHMS), Canadian Health Survey on Children and Youth (CHSCY), and Survey of Financial Security (SFS)

Excluded classes: 95 classes for NAICS and 175 classes for NOC 



Journey to Implementation

Phase 1: Starting Point ~1.5 years ago

* Had management buy-in.

»  Were using Word Matching for some auto-coding activities.

« Early CCE version could consume word-matching outputs, in Production as of Jan 2019.

* G-Code being used for auto-coding using Word Matching and integrated FastText as a prototype in Jan
2019.
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Présentateur
Commentaires de présentation
Things we didn’t have: technical expertise, working relationships with CoP, DScD didn’t exist, HLG-MOS ML Project hadn’t been created.
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Journey to Implementation

Phase 2: Evolution of the Pilot / Unit

» Developed technical capacity to develop quality models (learning / consultation)
« Training Data, Pre-Processing, Feature Selection, Parameters, Analysis, etc.

» Collaborated with Methodology on development of a QC Sampling Strategy
* G-Code with FastText moved in to Production.

« Developed good working relationships with ML partners
« Data Science Accelerator / Data Science Division
* G-Code Methodology Team — Statistical Integration Methods Division
« ML Communities of Practice
« Subject matter areas

NAICS and NOC models used in Production for CCHS and CHMS.
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Présentateur
Commentaires de présentation
Brought in Data Science students, developed our own skills and understanding in the unit



Journey to Implementation

Phase 3: Going Forward
« May be able to use models for other small surveys, such as the General Social Survey (GSS).
» Further improvement of models: boosting minority classes, additional data sources.

» Work towards development of models tailored to use for Job Vacancy and Wage Survey (JVWS) and
Labor Force Survey (LFS).

» Revisit Methodology QC sampling plan to account for upcoming CCE development.

» Adapt upcoming Quality Validation Framework(s).
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Présentateur
Commentaires de présentation
JVWS 250K
LFS 220K
QC Sampling Plan, will not have ability to exclude by class, QC by Code/Class not available until some future version of the CCE is developed and deployed.
QV Framework – Policies, Guidelines, Checklist, Peer Review, Committee Sign-Off


Conclusions / Lessons Learned

 Time Investment / Interdependencies
 Technical capacity
* |IT systems development / Testing
* Methodology consultation
» Client approval
 Feasibility / Suitability - ROI
« Engagement / Buy-In

» Subject matter / Management
« Explainability / ML black box

Statistics ~ Statistique
anada Canada
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Présentateur
Commentaires de présentation
Things take time to develop, need to be considering as many aspects as possible from an early stage.
-Need to have activities running in parallel.

Technical – Takes a long time to learn and develop skills. Data Scientists are in high demand. Difficult to ramp up a team.
IT Systems – Enhancements to existing systems take time, money, may be competing priorities.
Meth – May be quality control / assurance considerations that may not have been taken in to account early on. Minority classes. Systems implications.
Client – SMAs may not be on board from the beginning, may have reservations, may need thorough explanations and quality checks in place, may require parallel runs.
Feasability - Assessment of time and effort invested / ROI compared to expected efficiencies. Time spent selecting technology, time developing model, time moving to prod. Models: Feature selection, data complexity, classification complexity, balance, etc.

Engagement
Client / Management tolerance of risk?


Thank you!

Questions?
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Model Creation
 Algorithm: FastText (approved for use in G-Code)

» Training Data Sources
« CCHS: 88,782 historical records
» Labour Force Survey (LFS): 443,464 historical records
« Standards Classification: 80,000 NOC and 40,000 NAICS index entries

1"
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Model Creation

Preprocessing Steps

« Exploratory: Multiple Bags of Words, Up-Sampling of Minority Class, Separation of English and French
Models, Stemming and Lemmatization, and Pre-Trained FastText Embeddings.

* Production:
1. Removal of Stop Words
2. Lowercasing character conversion
3. Merging of the variables ‘Business Name’ and ‘Name of Employer’
4

Application of a Caesar Cipher to differentiate text from “Company”, “Industry”, “Job Title” and “Job
Description” when concatenated into a single field

Documented on UNECE, Working Documents: FastText_Techniques FastText Techniques
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https://gcdocs.gc.ca/statcan/llisapi.dll/Overview/5567334
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Temporary production pipeline with the CCE
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Add output files for testing (then analyze) then
test_class_reports

Available in GC Docs: https://gcdocs.gc.ca/statcan/llisapi.dll/Overview/7285192
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https://gcdocs.gc.ca/statcan/llisapi.dll/Overview/7285192

CCHS Autocoding

As the Coding and Corrections Environment (CCE) cannot currently consume results from
G-Code ML models, we developed a temporary production pipeline to code CCHS

« Validation Pipeline
« CCHS output files (2019 Q2) used as historical data.
* Records = 7917.

* Production Pipeline
« CCHS (2019 Q3, Q4) collection period.
» Records = 7430, 7404
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Présentateur
Commentaires de présentation
April, July, October 
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Comparison of pipelines

Validation Pipeline Production Pipeline

Machine-Learning: Non-QC Machine-Learning: Non-QC

Machine-Learning: Non-QC

Interactive: QC Sample

4.9%
Interactive: QC by Class

Interactive: QC Sample
Interactive: Confidence Threshold

Interactive: QC Sample

Interactive: QC by Class
Interactive: QC by Class

Collection Period: Q2 Q3 Q4
Records: 7917 7430 7404
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Production pipeline error rate

Collection Period

Q3

Q4

Statistics ~ Statistique
Canada Canada

Table 1. Error rate of NAICS and NOC in CCHS production pipeline. Record flow
follows the same path as described in Figure 1. Record number = 7430 (Q3), 7404
(Q4). (*) indicates the error rate of manual coders in production before verification

is applied.

Interactive: . . Machine-

e .. . Interactive: Interactive: .
Classification Confidence QC by Class Qc sample Learning:
Threshold y P Non-QC

NAICS 2017 3.0* 2.2 N/A

NOC 2017 4.7* 2.5 N/A

Both 3.9% 4.2 N/A
Interactive: . . Machine-

e . . Interactive: Interactive: .
Classification Confidence QC by Class Qc sample Learning:
Threshold y P Non-QC

NAICS 2017 1.1%* 0.0 N/A

NOC 2017 1.6* 1.8 N/A

Both 1.3* 1.8 N/A

Delivering insight through data for a better Canada
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Présentateur
Commentaires de présentation
2019-Q4 -  This collection data had a ML code populated on screen to the coder.
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Figure 2. Per class analysis of NAICS and NOC. The 20 most frequently coded classes in each classification
are displayed. Each class includes the stage (color coded in the legend) at which the record was coded in.

Statistics
Canada

[ Interactive: Canfidence Threshold
[ Interactive: OC Sample

I Interactive: QU by Class

E Machine-1eaming: Mon-0OC

M
u
=1

n
o
=]

Fecard Mumber

B220 |
6111 -|
7225
6230 |
a151
231
3110
6241
2120
5617
5415
9130
2382
5413
5271
7139
6113
KEXX
agal
2481

1751

1254

-
=)
=1

759

504

Delivering insight through data for a better Canada

3 Interactive: Confidence Threshald
[ Interactive: OC Sample
B Interactive: QC by Class

war |
oz
o |
oo
s |
o |
o |
o |
o
xxxx-|
5733 ]
o
1241 |
2 |
ot
o |

Canada



Table 1. NAICS and NOC model metrics tested on multiple surveys. Overall
Accuracy, F1, Precision, and Recall were calculated on the entire training dataset.
After a confidence threshold was applied, the error rate and coding rate were
calculated on the remaining records. (*) A subset of the NOC training dataset,
using only CCHS data, was evaluated using a different confidence threshold.

Measure NAICS NOC NOC — CCHS*
Record # 64,249 | 157,527 7,088
Overall Accuracy (%) 80.5 64.4 70.8
Weighted Average F1-Score 80.4 51.5 70.6
Weighted Average Precision 81 53.3 71.9
Weighted Average Recall 80.5 51.8 71.0
Confidence Threshold (%) 96.0 99.9 99.0
Error Rate (%) 4.5 5.9 4.8
Coding Rate (%) 61.25 10.9 36.2
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Table 4. NAICS and NOC model metrics for the CCHS production pipeline.
Overall Accuracy, F1, Precision, and Recall were calculated on the ‘Interactive:
QC Sample’. Record number = 343.

Measure NAICS 2017 NOC 2016
Error Rate (%) 2.2 2.5
Weighted Average F1-Score 97.5 96.9
Weighted Average Precision 97.4 96.7
Weighted Average Recall 97.8 97.5
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