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1. Background and why and how this study was initiated 

(as many sentences as necessary, as few as possible) 

 

U.S. laws require many organizations to keep records of the circumstances of work related 

injury and illness. Each year the Bureau of Labor Statistics (BLS) collects about 300,000 of 

these through our Survey of Occupational Injuries and Illnesses (SOII). We then read and 

categorize this data to provide information about the number, rate, and circumstances of 

injuries and illnesses experienced by American workers. Among other items, we identify 

occupation of the worker based on their job title, and the nature of the injury, part of body 

injured, event, and sources of injury from the injury narrative. For most of our history this 

work was done by hand, but this is not a perfect solution. Manual coding requires significant 

labor, in our case estimated at about 25,000 hours per year. To perform this quickly we 

must therefore use a large number of people, and this requires that we train and monitor 

these individuals to ensure they classify injuries in a consistent manner. This is far from easy. 

In one experiment, for example, we found that when we asked different experts to 

independently code the same cases, any two experts only chose the same codes for the 

same cases about 70% of the time.  

 

This project was also influenced by a number of other factors, including the following: 

• In 2009, researchers from Purdue University and Liberty Mutual published research 

suggesting that ML techniques might be very effective for injury classification (see 

“Bayesian methods: a useful tool for classifying injury narratives into cause groups” 

by Lehto, Wellman, and Corns).  
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• At around the same time, BLS received additional funding to study weaknesses in the 

Survey of Occupational Injuries and Illnesses. This research revealed that 

categorization errors were one source of problems. 

• Recently launched free online courses on machine learning and natural language 

processing made it much easier for staff to quickly learn about the latest machine 

learning and natural language processing techniques.   

 

Ultimately these factors led BLS management to allocate resources to the automated 

categorization of injuries and illnesses, including creating a new position to spearhead this 

effort.    

 

One of our first tasks was to evaluate potential solutions. We initially considered 3 options: 

1. A rule-based system developed by a popular statistical software company. 

2. A machine learning system developed by academics. 

3. A machine learning system, developed in-house using the free and open-source 

library scikit-learn. 

 

We launched pilot projects to evaluate each of these and ultimately determined that open 

source software provided the best quality coding and the lowest cost for our task. 

 

2. Data 

2.1 Input Data (short description) 

 

The primary inputs to our task are digital text narratives describing the occupations of 

injured workers and the various circumstances of their injuries and illnesses. Although there 

is significant variation in the length and content of these narratives, a typical narrative might 

resemble the following: 

Narrative  Codes assigned by BLS 

Job title: RN 

What was the worker doing?  

Helping patient get into wheel chair 

What happened?  

Occupation: 29-1141 (registered nurse) 

Nature: 1233 (strain) 

Part: 322 (lower back) 

Event: 7143 (overexertion in catching) 
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Patient slipped and employee tried to catch her 

What was the injury or illness?  

Strained lower back 

What was the source? Patient 

Source: 574 (patient) 

Secondary source: None 

 

Company and industry specific terminology are common, as are spelling errors. Additional 

inputs include the industry classification of the worker’s employer, the employer’s name, 

and a 12 item checkbox indicating the general focus of the worker’s occupation. The training 

targets are the occupation and injury and illness codes that were assigned by human coders. 

Each case receives six codes indicating the occupation of the worker, the nature of their 

injury or illness, the part of body affected, the event that caused the incident, and the 

source and secondary source of the injury or illness. The occupation is assigned according to 

the Standard Occupation Classification (SOC) system. The remaining codes are assigned 

according to version 2.01 of the Occupational Injury and Illness Classification System (OIICS). 

When our autocoding research began our training and evaluation data consisted of 

approximately 261,000 records, but it later grew to more than 2 million and continues to 

grow each year. 

  

2.2 Data Preparation 

(e. g.: Data Cleaning, Normalisation… – or: none) 

 

Although we initially conducted a variety of data cleaning, preparation, and normalization 

experiments, we ultimately found insufficient benefit to justify the added complexity. Our 

best autocoders do no stop-word removal, stemming, or other extensive preprocessing 

beyond tokenization using simple heuristics (i.e. separate words on blank spaces). 

 

2.3 Feature Selection  

(yes/no, if yes: how, why) 

We did very little feature selection. We focused primarily on exploring inputs that humans used 

when completing similar tasks. 

 

2.4 Output data 
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(short description) 

Six classifications are assigned to each case based on the SOC and OIICS 2.01 classification 

systems: 

1. Occupation (according to the SOC classification system) 

2. Nature of injury (OIICS) 

3. Part of body injured (OIICS) 

4. Event that caused injury (OIICS) 

5. Source of injury (OIICS) 

6. Secondary source of injury (OIICS) 

We eventually trained ML models to assign codes to each of these. Each model calculates 

the probability that each possible code is correct. The highest probability code is 

automatically assigned if it exceeds a predetermined probability threshold. 

3. Machine Learning Solution 

3.1 Models tried  

(e. g.: Multi-Layer-Perceptron, Random Forest, SVM, ...) 

 

We tried many popular approaches to text classification including Logistic Regression, 

Support Vector Machines, variants of Naïve Bayes, Random Forests, multilayer perceptrons, 

and many variations of convolutional and recurrent neural networks. The results of some of 

these experiments are described in 2 papers: 

• Automated Coding of Worker Injury Narratives (https://www.bls.gov/osmr/research-

papers/2014/pdf/st140040.pdf) 

• Deep neural networks for worker injury autocoding (https://www.bls.gov/iif/deep-

neural-networks.pdf) 

 

3.2 Model(s) finally selected and the criterion  

(i.e.: which model was why seen being the best?) 

How was the final model selected? How did it meet all or most of the objectives or expected 

added value of the study? 

The primary purpose of our project was to improve the overall quality of coding, which at 

the time was done entirely by humans. To solve this we needed to measure and compare 

https://www.bls.gov/osmr/research-papers/2014/pdf/st140040.pdf
https://www.bls.gov/osmr/research-papers/2014/pdf/st140040.pdf
https://www.bls.gov/osmr/research-papers/2014/pdf/st140040.pdf
https://www.bls.gov/iif/deep-neural-networks.pdf
https://www.bls.gov/iif/deep-neural-networks.pdf
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both human and automated coding quality. We did this by selecting a representative sample 

of cases that had already gone through our manual coding process. We then hid the codes 

that had been assigned to each of these and asked a panel of coding experts to recode each 

case from scratch. These expert codes formed our “gold standard” against which we 

evaluated the quality of both our existing (human-based) and automated coding options. 

Our evaluations showed that our automated coders (which were not trained on any of the 

cases in the gold standard data) were more accurate than our manual process when coding 

the entire gold standard dataset. Although this indicated that automated approaches were 

promising, it did not tell us the optimal combination of manual and automated coding.  

 

Since our autocoders not only predict codes but also calculate probabilities associated with 

these predictions, and since these probabilities are empirically closely related to the actual 

probability that the codes are correct, we decided to use the predicted probability to 

control the amount of autocoding. In the simplest case this is done by selecting a probability 

threshold and only allowing autocoding when the predicted probably exceeds that 

threshold. To find the best threshold we used simulation on the gold standard. Specifically, 

for each possible threshold between 0 and 1 in increments of .01: 

• We automatically assigned codes to the gold standard using machine learning if the 

associated probability exceeded the chosen threshold. 

• We assumed all other codes would be assigned by human staff and would therefore 

match the codes that had been manually assigned to these cases. 

• We then calculated the overall accuracy and macro F1 score of the combination of 

manual and computer coding  

For each task we selected the probability threshold that produced the highest overall 

macro-F1-score for the combination of manual and computer coding, mitigated initially only 

by a competing desire to increase the quantity of autocoding slowly so other processes had 

sufficient time to adapt.  

 

3.3 Hardware used 

(e.g.: Intel Core i5-6300U, 2.4GHz) 
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We initially used standard laptops with 2-4 cores and 8-16 gigabytes of RAM (RAM being the 

main limiting factor). When we switched to neural networks we used 4 Titan X Pascal GPUs, 

each with 12 gigabytes of RAM and 3,584 cores.  

 

3.4 Runtime to train the model 

(e.g.: 2 hours for 500,000 training samples and 25 features) 

This depended on the model and the amount of training data available at that time. Some 

algorithms, like naïve Bayes, trained very fast (nearly instantly on small datasets). Others, 

like some of the deep neural networks, could take several days or even weeks to train on 

millions of records. 

 

4. Results 

(e. g. in terms of RMSE, MAE, distributional accuracy [*], F1 (micro or macro), recall, 

accuracy, (threshold,) ..., perhaps as a table for different situations (if available)) 

[*]: If used: How did you measure distributional accuracy? By proportions, moments, quantiles, correlations, 

...? 

 

See our papers for results and descriptions of the metrics calculations. Our primary metrics 

were accuracy and macro F1 score, calculated using scikit-learn. 

• Automated Coding of Worker Injury Narratives 

• Deep neural networks for worker injury autocoding 

 

 

5. Code/programming language 

(e.g. the Python code is stored in GitHub) 

 

All autocoders were created using the Python programming language. The neural network 

autocoders were created using the free and open-source Tensorflow and Keras libraries. All 

others were created using the free and open-source scikit-learn library. All evaluation 

metrics were calculated using the scikit-learn accuracy_score and f1_score functions. The 

code for the neural network autocoder is available on GitHub at 

https://github.com/USDepartmentofLabor/soii_neural_autocoder. The logistic regression 

https://www.bls.gov/osmr/research-papers/2014/pdf/st140040.pdf
https://www.bls.gov/osmr/research-papers/2014/pdf/st140040.pdf
https://www.bls.gov/iif/deep-neural-networks.pdf
https://www.bls.gov/iif/deep-neural-networks.pdf
about:blank
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autocoders are very similar to the autocoders described in this autocoding tutorial. See our 

papers for additional details. 

 

6. Evolution of this study inside the organisation 

(e. g.: Collaboration within the organisation? Has this study advanced ML within the 

organisation?) 

 

Many stakeholders from all major branches of the organization were consulted, including 

information technology, methodology, and subject matter. Eventually a cross-functional 

team was created to oversee the development of the autocoder. Most of the work is still 

done by a small number of individuals however because of a shortage of staff familiar with 

Python programming and neural networks.  

 

When the project started there were no other groups using machine learning for text 

classification in BLS. The success of our project however has inspired many similar projects 

and a number of efforts to use these techniques more broadly, including formal and 

informal meetings with programs involved in similar projects, dozens of internal 

presentations, and internal trainings and training materials. We continue to advise and 

collaborate with a number of related projects on a frequent basis. 

 

7. Is it a proof of concept or is it already used in production? 

(If it is a proof of concept: Was it successful? How will its results prospectively be used in 

the future?) 

This project is in production and has been in production since 2012, when it was initially 

used to assist with data review. Rollout was a long and gradual process that started small 

and gradually grew over many years. Today more than 85% of codes are assigned by a 

neural network.  

There were many challenges along the way but some of the biggest include the following: 

1. Lack of relevant skills and knowledge: BLS has lots of survey statisticians, economists, 

database administrators, web developers and SAS and Java programmers, but 

natural language processing, machine learning, and Python are not things that any of 

https://github.com/ameasure/autocoding-class/blob/master/machine_learning.ipynb
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these people are normally trained in and these skills are critical for implementing 

modern machine learning systems.   

2. Organizational structure: Effective machine learning projects require a combination 

of product, methodology, and information technology expertise, but the 

organizational structure separates these skills into different divisions reporting to 

different leaders and this makes it difficult to align these skills toward common 

goals. Ultimately, intervention from senior management was required to align these 

activities.   

7.1 What is now doable which was not doable before? 

Our machine learning autocoders allow us to categorize occupation and injury and illness 

data more accurately than trained human staff. This improves the quality of our estimates 

and frees up staff to spend more time on other important activities like data review and 

additional data collection. 

 

7.2 Is there already a roadmap/service journey available how to implement 

this? 

(as many sentences as necessary, as few as possible) 

 

The system is already implemented. For the first couple of years the system was only used 

to help with review of manually assigned codes. Automated code assignment started in 

2014 and initially accounted for a tiny amount of coding. This gradually expanded over time 

as people became more comfortable with it. 

 

7.3 Who are the stakeholders? 

 

The people most directly affected are our human coders. As the computers have automated 

more coding, their role has shifted from lots of manual coding to more review and data 

collection. Although we initially expected some pushback, our experience has mostly been 

that the coders were happy to have assistance. The other major stakeholders are our data 

users. We presented our work in a wide variety of public venues and to a variety of advisory 

committees to gather their input.  
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7.4 Robustness 

 

We have a variety of processes to ensure the autocoder works as desired. Before any model 

is put into production it is evaluated against a representative sample of “gold standard” 

cases. The model is only used if it shows better performance than the previous automated 

or human based approaches. After the model is placed into production we use the following 

processes to verify that it continues to work correctly: 

1) Manual review: We ask the human staff that used to do all coding to manually 

review every automatically assigned code and change it if it is incorrect. We also ask 

them to notify us if they notice any systematic problems. 

2) Hold back review: We randomly select a sample of cases to exclude from automated 

coding. We do this to see how our human staff code cases without the assistance of 

a computer. This allows us to later update our gold standard measurements of 

human quality. It also helps us identify issues in automated coding by allowing us to 

compare the human assigned codes to codes the computer would have assigned. 

3) Additional levels of review: As we did with purely manual coding, we conduct a 

variety of additional levels of coding review primarily in the regional and national 

offices. This includes targeted review of known and suspected problem areas. 

4) Key metrics review: We also periodically check a variety of metrics to verify that the 

autocoder is working as expected. For example, we look at how often human coders 

change computer assigned codes. We are in the process of using this information to 

train another machine learning model to automatically identify codes that need 

additional review.   

 

7.5 Fall Back 

 

The human staff that used to do all of the coding still work at BLS, and still assign codes to 

cases that the autocoder does not. If the autocoder started making lots of errors they would 

likely notice and notify us. If necessary we could shut down the autocoder and return to full 

manual coding, although this would reduce the amount of time our human staff could spend 

on other important activities like data collection and review.  
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8. Conclusions and lessons learned 

(e.g.: ML can be used for editing but one has to have the following points in mind ...) 

 

This project has greatly advanced the knowledge and awareness of machine learning and 

natural language processing techniques in my organization.  

 

9. Potential organisation risk if ML solution not implemented 

(as many sentences as necessary, as few as possible) 

 

In our case, the main risk was lower quality data. Our evaluations showed that automated 

coding produced higher quality coding. 

 

10.  Has there been collaboration with other NSIs, universities, etc? 

(yes/no, if yes: which ones?) 

Yes. In the early days the project received assistance from autocoding researchers at Purdue 

and Liberty Mutual. We were later introduced to other techniques through the online 

courses of Andrew Ng (Machine Learning), Michael Collins (Natural Language Processing), 

Chris Manning and Dan Jurafsky (Natural Language Processing), and Geoffrey Hinton (Neural 

Networks). We also relied heavily on a wide variety of research in machine learning and text 

classification conducted by many researchers from all over the world (see the references in 

our papers for some of these).  

 

Next Steps 

(as many sentences as necessary, as few as possible) 

We plan to continue to use machine learning for Survey of Occupational Injury and Illness 

coding and we also plan to expand the use of machine learning to other coding tasks and 

data review and record matching projects. 


