SARIMA models for early estimates of energy balance statistics

Frederic Picard, Statistic Canada

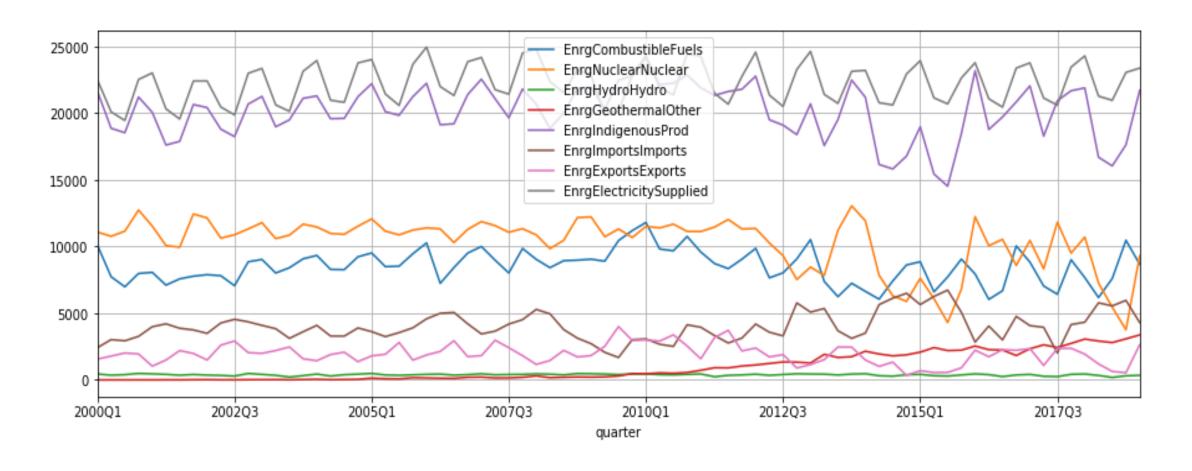
Delivering insight through data for a better Canada

Introduction

- Anneleen Goyens and Bart Buelens are in the process of publishing Early estimates of energy balance statistics using machine learning
- In their paper, they used machine learning models to forecast energy balance series
- For the sake of comparison, I forecasted the same series but using classical Time Series Methods
- I used Exponential Smoothing Models and also SARIMA models
- In this talk, we will show the SARIMA models selected and compare their performance with the ML models

Overview of the Data

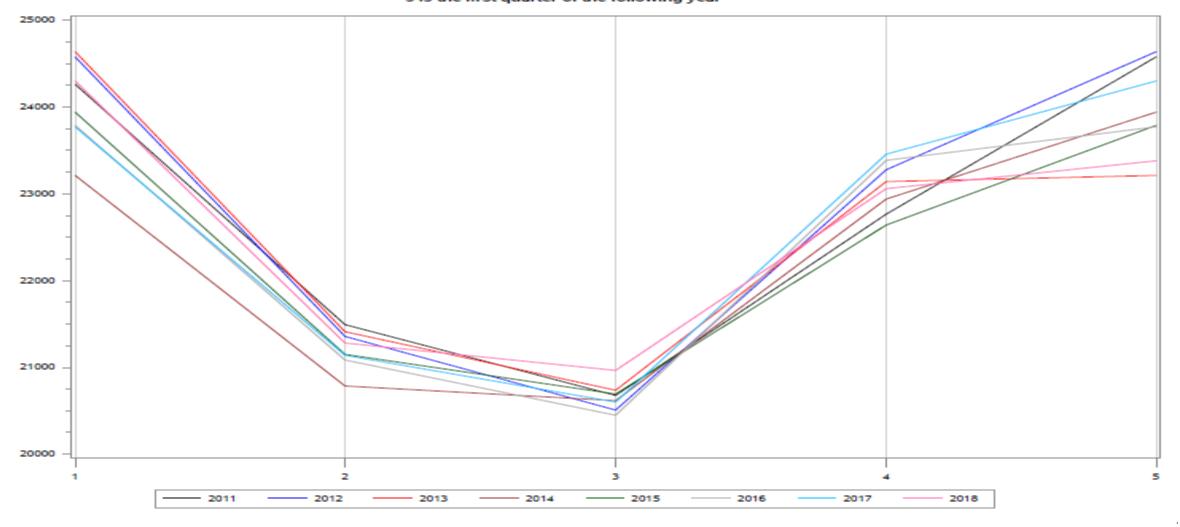
- Quarterly data
- Eight target series in GWh: Combustible Fuels, Hydro, Geothermal/Other, Indigenous Production, Imports, Exports, Electricity Supplied
- Some auxiliary variable (Economic, Weather variables)
- Data is from 2000Q1 to 2019Q1
- Training dataset: from 2000Q1 until 2015 Q1
- Test dataset: from 2015Q2 to 2019Q1
- All eight target series are seasonal

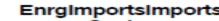


Delivering insight through data for a better Canada

3

EnrgElectricitySupplied Quarters 5 is the first quarter of the following year





EnrgImportsImports
Quarters
5 is the first quarter of the following year



Machine Learning Methods used in the paper

- Linear Model
- Ridge
- LASSO
- Random Forest
- Neural Net
- Ensemble (averaging of the above methods)

- Only the test data was used for the model selection and the parameter estimation
- The SARIMA models were selected using stationarity tests for the orders of differentiation and AIC tests were used for the order of the models
- Auxiliary variables were deemed not improving the model according to an AIC test so they were not used
- Forecasts were out-of-sample (only the training data was used in the forecast)
- The work done using the SAS® High-Performance Forecasting software

SARIMA models selected

Series	Model			
Combustible Fuels	(0,1,1)x(0,1,0)			
Nuclear	(3,1,0)x(0,1,1)			
Hydro	(1,1,0)x(0,1,1)			
Geothermal Other	(0,1,1)x $(0,1,1)$			
Indigenous Production	(0,1,0)x(2,1,0)			
Imports	(0,1,0)x $(0,1,1)$			
Exports	(4,1,1)x(0,1,0)			
Electricity Supplied	(0,1,0)x(0,1,1)			

Comparison with Machine Learning Methods using the MAPE

	SARIMA	Linear Model	Ridge	LASSO	Random Forest	Neural Net	Ensemble
Combustible							
Fuel	8.3%	13.5%	14.6%	18.2%	14.1%	18.5%	13.8%
Electricity							
Supplied	1.6%	3.0%	4.2%	4.7%	1.5%	1.6%	1.7%
Exports	78.5%	91.1%	69.7%	74.1%	70.5%	58.1%	62.9%
Geothermal	11.6%	80.6%	15.0%	15.6%	26.0%	42.1%	34.2%
Hydro	14.8%	23.2%	18.3%	22.5%	18.2%	36.9%	22.8%
Import	59.5%	25.3%	44.6%	50.3%	39.7%	32.3%	34.9%
Indigenous	24.6%	14.9%	10.7%	11.1%	10.2%	11.1%	10.1%
Nuclear	39.0%	47.5%	33.3%	32.2%	31.6%	34.1%	32.4%

- In the paper, the ML models are compared with a baseline model "yminus 4" which means using the value of the same quarter of the previous year
- "yminus4" is equivalent to a SARIMA model (0,0,0)x(0,1,0) model which is the simplest SARIMA model
- SARIMA models are well established and there are fairly automated procedures (such HPF in SAS and auto.arima() in R) to select the models
- SARIMA models can be used as a benchmark to evaluate if a machine learning algorithm can improve accuracy when forecasting time series
- Alternatively an "Airline model" (0,1,1)x(0,1,1) could be used as a baseline model

10

Conclusion

- Based on those eight series, no method is clearly the best in all situations
- SARIMA seems to be doing better for series with a clear seasonal pattern
- There are well established automated SARIMA model selection methods in several software
- Such SARIMA model could be used as benchmark (in addition to "yminus4")