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project and consisted of: Wesley Yung – Chair (Canada), Siu-Ming Tam (Australia), Bart Buelens (Belgium), 

Florian Dumpert (Germany), Gabriele Ascari, Fabiana Rocci (Italy), Joep Burger (Netherlands), Hugh 

Chipman (Acadia University) and InKyung Choi (United Nations Economic Commission for Europe) 

Executive summary 

As national statistical offices (NSOs) modernize, interest in integrating machine learning (ML) into official 

statisticians’ toolbox is growing. In the 2018 Blue Skies Thinking Network paper (UNECE 2018), two issues 

were identified: the potential loss of transparency from the use of “black-boxes” and the need to develop a 

quality framework. The goal of Work Package 2 of the High-Level Group for the Modernisation of Official 

Statistics’ ML project was to address these two challenges. Many quality frameworks exist; however, they 

were conceived with traditional methods in mind, and they tend to target statistical outputs. Currently, ML 

methods are being looked at for use in processes producing intermediate outputs, which lead to a final 

statistical output. These processes include, for example, coding, imputation and editing, which do not 

directly produce statistical outputs, but whose results are used downstream to ultimately produce final 

outputs.  

 

The working group is proposing the Quality Framework for Statistical Algorithms (QF4SA) to address the 

two issues identified in the Blue Skies Thinking Network paper. For the quality framework, the term 

“algorithm” is defined as a process or set of rules to be followed in calculations, derived from an assumed 

model and a predetermined set of optimization rules, for estimation or prediction. With this definition, the 

working group feels that both traditional and modern methods are covered. The proposed QF4SA 

comprises five dimensions: 

1) explainability 

2) accuracy 

3) reproducibility 

4) timeliness 

5) cost effectiveness. 

 

The QF4SA does not replace existing quality frameworks; it complements them. As the QF4SA targets 

intermediate outputs and not necessarily the final statistical output, it should be used in conjunction with 

existing quality frameworks to ensure that high-quality outputs are produced. The working group proposes 

the following recommendations: 
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1) It is recommended that all five dimensions of the QF4SA be considered when deciding on the choice 

of an algorithm, particularly when choosing between traditional and ML algorithms. 

2) It is recommended that NSOs explore and use the methods outlined in the Explainability section to 

help users understand the relationship between input and output variables.  

3) It is recommended that NSOs calculate the expected prediction error, as well as the prediction error, 

to protect against potentially poor-quality training data. In addition, it is recommended that high-

quality training data be created when applying supervised ML algorithms. 

4) It is recommended that NSOs use the highest-quality training data possible when applying prediction 

algorithms. This will also facilitate the estimation of expected prediction errors.  

5) It is recommended that, as a minimum, NSOs take action to implement methods reproducibility. 

Inferential reproducibility should be carried out as well, when possible and desirable. 

6) It is recommended that development and processing time be added to the commonly used concept 

of timeliness. 

7) It is recommended that NSOs consider two aspects in particular when considering cost effectiveness: 

cheaper operating costs and time to recoup fixed costs. 

1.0 Introduction 

The aim of national statistical offices (NSOs) is to develop, produce and disseminate high-quality official 

statistics that can be considered a reliable portrayal of reality. In this context, quality is the degree to which 

a statistic’s set of inherent characteristics fulfills certain requirements (Eurostat 2014). These requirements 

are typically set out in a quality framework, which is a set of procedures and processes that support quality 

assurance within an organization and is meant to cover the statistical outputs, the processes by which they 

are produced, and the organizational environment within which the processes are conducted. Many widely 

accepted quality frameworks related to official statistics exist; for example, see the Australian Bureau of 

Statistics’ Data Quality Framework (ABS 2009), the United Nations’ National Quality Assurance Framework 

(UN 2019), Eurostat’s European Statistics Code of Practice (Eurostat 2017) and Statistics Canada’s Quality 

Assurance Framework (Statistics Canada 2017). 

 

Modern methods such as machine learning (ML) are gaining popularity as tools for official statisticians. In 

combination with modern hardware and software, these methods allow official statisticians to process new 

data sources such as text and images, automate existing statistical processes, and potentially make 

inferences without a sampling design. With this increased interest, a quality framework must be considered 

for statistical processes where these methods could be used.  
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In a traditional estimation context, statisticians typically attempt to learn as much as possible about a 

scientific truth from observed data. As described by Efron (2020), the scientific truth can be represented as 

a surface, and the observed data can be thought of as observations on the surface obscured with noise. Efron 

calls this the surface plus noise formulation. For example, a simple linear regression uses a formulation 𝑦 =

𝛽0 + 𝛽1𝑥 + 𝜖, where the surface, or, in this case, the line, is represented as a linear function of a variable x, 

and the response value, y, is observed with noise ε. Based on a set of observations (or data), the parameters 

of the line are estimated (e.g., using maximum likelihood or ordinary least squares methods) to obtain the 

estimated surface.  

 

ML, on the other hand, can be differentiated from the traditional estimation context by its focus on prediction 

as opposed to estimation. ML algorithms “go directly for high predictive accuracy and [do] not worry about 

the surface plus noise models” (Efron 2020). Rather than searching for a hidden truth about the underlying 

phenomenon that generated the data or characteristics of the population, ML primarily aims to make 

predictions about individual cases. Note that this does not mean traditional statistical algorithms cannot be 

used for prediction. Once the parameters of a regression surface, or line, are estimated (i.e.,𝛽̂0, 𝛽̂1), they can 

be used to make a prediction for any given new data point, x (i.e.,𝑦̂ = 𝛽̂0 + 𝛽̂1𝑥 ). For this reason, some 

traditional statistical algorithms are commonly found in the ML toolbox, to be used for prediction rather than 

estimation.  

 

With different purposes, it is not surprising that traditional statistical and ML algorithms have different areas 

of application, where one performs better than the other. For example, city planners who are interested in 

understanding what factors cause congestion in certain districts may employ statistical methods that have a 

long history of successfully solving such problems. But companies providing real-time traffic services for 

commuters are more interested in predicting whether a certain route that a commuter is taking will be 

congested or not, and this is the area of prediction in which ML specializes. In situations where accurate 

predictions at the individual level are infeasible, ML methods may also see limited applicability. However, 

statistical methods can still deliver insight. For example, a statistical model such as a logistic regression allows 

the assignment of significance to individual predictors when modelling the occurrence of a disease, even if 

such an ML or classical statistical model cannot accurately predict which individuals will get the disease. 

 

The popularity of ML in social media services, online shopping recommendations and search engine 

refinement is due to its ability to make predictions for individual cases. In the official statistics field, ML is 

becoming increasingly popular in areas where such individual prediction tasks are needed. These can be areas 

where these tasks used to be solved by traditional statistical algorithms (e.g., predicting whether a certain 

record needs editing) or by manual work (e.g., predicting to which category an open-ended response or 
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satellite imagery pixel should be classified). This popularity may be because machine learners accept more 

complex models than traditional statisticians, and this can lead to higher predictive accuracy. 

 

ML is a relatively new tool in the official statistics field. While there is a growing body of work on the 

methodological aspects of ML, less has been done on the quality aspects. Commonly used and accepted 

quality concepts may require re-evaluation through ML perspectives. For example, the United Nations’ 

National Quality Assurance Framework states, “the accuracy of statistical information reflects the degree to 

which the information correctly describes the phenomena it was designed to measure, namely, the degree 

of closeness of estimates to true values” (UN 2019). While this accuracy is often considered as how accurately 

statistical estimates describe characteristics of the underlying population (e.g., unemployment rate estimate 

based on the Labour Force Survey), accuracy for ML can also mean how accurate predictions are for individual 

cases in an intermediate processing task as part of the entire production process. Also, unlike manual 

classification done by humans, ML methods are scalable but may require initial development and investment. 

This affects cost effectiveness and timeliness of the end product in a different way than existing methods. 

The specificity of ML methods requires new quality dimensions (e.g., explainability and reproducibility) that 

are not considered in existing quality frameworks. 

 

The goal of this document is to propose the Quality Framework for Statistical Algorithms (QF4SA) to provide 

guidance on the choice of algorithms (including traditional algorithms) for the production process. 

Throughout this document, we define an algorithm as a process or set of rules to be followed in 

calculations, derived from an assumed model and a predetermined set of optimization rules, for estimation 

or prediction. Statistical algorithms are those used within a statistical context. We purposely use the 

terminology statistical algorithm as it covers both traditional and modern methods typically used by official 

statisticians. It is impossible to talk about algorithms without thinking of data. However, throughout this 

document, we do not address data explicitly, but we do recognize that there is an important interplay 

between algorithms and data. In particular, all quality measures proposed are conditional on the data that 

are available. 

 

Under the QF4SA, we propose five quality dimensions: explainability, accuracy, reproducibility, timeliness 

and cost effectiveness. Most of these dimensions are considered in existing quality frameworks for statistical 

outputs, but, in the QF4SA, they apply specifically to statistical algorithms that typically produce intermediate 

outputs. For example, classification and imputation are processes in the production chain whose results are 

used in subsequent steps. The QF4SA concentrates on these intermediate outputs, as ML algorithms seem 

to be used, for now, in these contexts. The QF4SA’sdimensions are defined below: 
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Explainability 

Explainability is defined as the ability to understand the logic underpinning the algorithm used in prediction 

or analysis, as well as the resulting outputs. Explainability is greatly assisted by depicting the relationship 

between the input and output variables and providing the necessary information on the methodology 

underpinning the algorithm. 

 

Accuracy 

Slightly different definitions of accuracy are given in several internationally accepted frameworks. The 

definition proposed for the QF4SA can be summarized as follows: the accuracy of statistical information 

refers to the degree to which it correctly describes the phenomena it was designed to measure; i.e., it is the 

closeness of computations or estimates to the exact or true values that the statistics were intended to 

measure. 

 

Reproducibility 

At the basic level, reproducibility is defined as the ability to replicate results using the same data and 

algorithm originally used. This is known as methods reproducibility. At a higher level, it is defined as the 

production of corroborating results from new studies using the same experimental methods (results 

reproducibility), or similar results using different study designs, experimental methods or analytical choices 

(inferential reproducibility). 

 

Timeliness 

For the QF4SA, timeliness is defined as the time involved in producing a result from conceptualization to 

algorithm building, processing and production. A distinction should be made between timeliness in 

development and production, with the former generally taking longer than the latter. 

 

Cost effectiveness 

Cost effectiveness is defined as the degree to which the results are effective in relation to their cost. It is a 

form of economic analysis that compares the relative merits of different algorithms. For this purpose, cost 

effectiveness can be defined as the accuracy (e.g., measured by the mean squared error [MSE] or F1 score) 

per unit cost. Note that the total cost of doing the work—including fixed costs, such as infrastructure and 

staff training, and ongoing costs, such as production costs—should be taken into account. 

 

It could be argued that there are other more appropriate definitions for these dimensions, but the purpose 

of the proposed quality framework is to open a dialogue on what official statisticians should think about 
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when comparing statistical algorithms, be they traditional or modern. In what follows, we elaborate on each 

of the dimensions and propose aspects of each to consider when comparing algorithms. 

2.0 Explainability 

2.1 Description of explainability 

In the QF4SA, explainability is defined as the degree to which a human can understand how a prediction is 

made from a statistical or an ML algorithm using its input features. Throughout this document, we use the 

term “feature” to represent individual independent variables that are inputs. This is synonymous with 

“explanatory variable”, “independent variable” or “regressor” in more traditional contexts. Note that 

explainability concerns the relationship between input features and the predicted output rather than the 

“mechanical” understanding of the algorithm. For example, “finding a hyperplane separating data points by 

class” is a mechanical understanding of a support vector machine (SVM), while an explanation such as “the 

higher the value of feature X, the more likely the output is classified as category Y” provides an understanding 

of how the input feature is related1 to the output. Note that a prediction can be explainable but might not 

be interpretable even with domain knowledge, i.e., in the above example, lack of a scientific explanation for 

why X produces the output Y. An ML algorithm is explainable as long as subject-matter experts and other 

users can assess the logic of the way the algorithm makes a decision (see “Importance of explainability” 

below)—for example, a type of chemical whose effect on the output is not well known but that turns out to 

be an important factor. Explainability can therefore be pictured as a concept between mechanical 

understanding and interpretability. 

 

Predicted values, or predictions, from statistical models are often considered more explainable than those 

from ML models because statistical models tend to be more explicit in linking inputs to outputs. For example, 

regression coefficients explain the direction and strength of the relationship between a feature and the 

output. However, this is not always the case. The explainability of a regression model becomes unwieldy in a 

generalized linear mixed model with many (potentially transformed) features, their interactions, their effect 

on regression coefficients and a non-identity link function. On the other hand, the explainability of a 

prediction from a deep decision tree (an ML algorithm) is straightforward. 

 

 
1. A relationship revealed in any model trained on observational data does not imply causation. For instance, 

increasing the value of feature X through a subsidy or tax benefit may not be a successful policy-making strategy to 
promote category Y. 
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While predictions from a single decision tree are explainable (e.g., the prediction of instance i is 𝑦̂𝑖 =

𝑦𝑖   because feature 𝑋1𝑖 > 𝑥1and feature 𝑋2𝑖 > 𝑥2), predictions from a random forest—combining 

predictions from hundreds of decision trees—are less explainable because a user cannot discern how input 

features lead to the output. Given enough data, more complex ML algorithms, such as (deep) neural 

networks, may outperform simpler algorithms in terms of prediction error because they can better learn 

nonlinear relationships and interactions. Combining multiple algorithms through bagging, boosting or 

stacking may further reduce prediction error and prevent overfitting. However, improved algorithm 

performance through increased complexity comes at the expense of explainability because as an algorithm 

becomes increasingly complex, it is often more difficult to explain. 

2.2 Importance of explainability 

Explainability is important to gain users’ trust in ML algorithms, as they are often considered “black-boxes.” 

Understanding how an ML algorithm makes decisions can increase users’ trust since they can relate the 

behaviour of the ML algorithm to their prior knowledge and internal logic. We do note that explainability 

might be user-specific. For a statistical organization using ML algorithms, users can include statisticians who 

may not be familiar with ML methods and subject-matter experts in the organization; data providers in 

partner organizations; data users such as the general public, academics and policy makers; and data scientists 

developing ML algorithms. 

 

Understanding how algorithms make certain predictions can shed light for users on hidden patterns within 

the data that humans cannot easily perceive. This could provide new insights about phenomena (for subject-

matter experts) and help improve the performance of the algorithm itself (for ML developers). 

 

While high prediction accuracy indicates that an ML algorithm performs well, an algorithm can make a correct 

decision for the wrong reasons. For instance, Szabo (2019) describes an example where an automatic system 

developed to predict a patient’s risk of pneumonia based on X-ray images turned out to have simply learned 

the type of X-ray machine. The reason was that doctors usually took X-rays with portable X-ray machines for 

patients in critical condition and in urgent need of diagnosis, whereas patients without serious conditions 

were sent to a radiology department where their X-ray would be taken with a different type of X-ray machine. 

If an algorithm is a black-box, the outputs could, at best, be of limited use to the user and, at worst, be 

misunderstood in critical decision making. In some circumstances, this could have an impact on human life. 

Therefore, by requiring some human intervention, explainability can serve as a safeguard that machines are 

making correct decisions for the right reasons. 
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Explainability draws great attention to developing fair, accountable, transparent and ethical artificial 

intelligence. When decisions made by a machine have a direct and significant impact on the daily lives of 

people (e.g., medical diagnostics, autonomous driving, fraud detection, social credit), it is important to 

ensure that such decisions are made fairly and ethically. For example, if an ML model developed for credit 

approval with hundreds of features happens to make decisions based mostly on certain demographic 

variables, the algorithm is likely to be considered unethical. Therefore, it should be corrected before 

deployment, regardless of how accurate its prediction is. ML algorithms are often considered neutral and 

independent as they make decisions solely based on data and free of human bias. However, because of the 

very fact that they “learn” from data, accidental bias in data can be perpetuated by ML algorithms if careful 

checks and balances are not in place. Given the increasing awareness that human subjects should be provided 

with an “explanation of the decision reached [through automated processing]” (EU 2016), NSOs, as public 

agencies, should be aware of these issues with the use of ML. For example, could the output of an ML process 

using many features identify unique individuals in a population? 

2.3 Making predictions explainable 

Explainable ML, or explainable artificial intelligence, is a recent but very active field of research. A multitude 

of methods, each with its own benefits and caveats, have been proposed to make predictions from black-box 

algorithms more explainable. Note that these methods do not directly make the ML algorithms more 

explainable. Instead, they make predicted results more explainable, and this sheds lights on the algorithm’s 

behaviour, thus improving understanding of how the algorithm works. The objective of this subsection is not 

to provide technical or methodological details of those methods but to introduce briefly a few existing 

methods developed in the ML community as a starting point. Readers who are interested in further 

information are encouraged to consult the resources listed in the references (e.g., Arrieta et al. 2020; Vilone 

and Longo 2020; Molnar 2019; and Bhatt et al. 2020). 

 

An important group of explainability methods shows the importance of features, by visual plots, quantitative 

measures or surrogate models. One way to assess feature importance is to plot how the model prediction of 

an instance changes when the value of one feature is changed. For example, assume there are p features 

(X1,...,Xp) and one output variable (Y). For each instance i, changing the value of X1i, while fixing the value of 

all other features, will create a line of predicted values that shows how the individual prediction 𝑦̂𝑖changes 

with the value of feature X1. Combining all (or a sample of) instances together yields an individual conditional 

expectation (ICE) plot for feature X1. 
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Figure 2.1 Example of individual conditional expectation plot 

(Source:Goldstein et al. 2014.) 

 

A partial dependence plot (PDP) averages over all instances to show the overall marginal effect of a feature 

on the model prediction. While ICE plots and PDPs are intuitive and easy to implement, they assume that the 

feature of interest, plotted on the X-axis, is uncorrelated with other features. This might not be true in real 

situations. 

 

Another way to assess feature importance without retraining the model is to measure the increase in 

prediction error when a feature is permuted, i.e., its values are shuffled to break up the relationship between 

the feature and the outcome. A surrogate model is an explainable model that approximates the relationship 

between the features and the outcomes predicted by a black-box model. The surrogate model provides an 

explanation for the prediction by the black-box model. Local interpretable model-agnostic explanations are 

an implementation of a surrogate model for the purpose of explaining a single prediction. New instances and 

their black-box predictions are generated around the instance of interest. An interpretable model is trained 

on the generated data, weighted by their distance in feature space to the instance of interest. For example, 

the figure below shows a complex relationship between the two-dimensional feature space (X-axis and Y-

axis) and binary output class (red and blue). An instance of interest is chosen (bold red cross), new instances 

are drawn from the feature space and their output values are predicted (crosses and points), and an 

explainable model (dashed line) is fit to the generated data, weighted by their distance from the instance of 

interest (size of crosses and points).  

 

about:blank
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Figure 2.2 Example of local interpretable model-agnostic explanation 

(Source: Ribeiro et al. 2016.) 

 

The Shapley value is a measure of the contribution of a single feature value to the prediction of a single 

instance. It is calculated by comparing the predictions between different values of the feature, averaged over 

all (or a sample of) possible combinations of values for the other features. The contributions sum to the 

difference between the individual and average prediction. 

 

Another group of explainability methods finds2 data points in feature space that are intended to serve as the 

following: 

● Counterfactual example: This is a data point that is as close as possible in feature space to the 

instance of interest but with a different predefined outcome. For example, assume that a description 

of a work-related injury is “I cut my finger while chopping something on a wood board,” and the 

occupation of the person is classified as “a cook.” However, if the description had been “I cut my 

finger while carving something on a wood board,” the outcome would have been “a sculptor.” The 

change in feature space between the predicted outcome and the counterfactual (e.g., “chopping” 

for “cook” vs. “carving” for “sculptor”) is a counterfactual explanation. 

● Adversarial example: This is an instance when one or more feature values have been slightly 

perturbed in a way that the right prediction turns into a wrong prediction (e.g., making an image 

classifier mislabel an image of a stop sign by adding a sticker to it). Although designed to mislead a 

trained image classifier, adversarial examples can be used to improve model security and robustness, 

and thus explainability.  

● Influential instance: This is a data point in the training set that considerably affects the performance 

of the algorithm when deleted. For some algorithms, influence functions can approximate an 

instance’s influence without the need to retrain the model. 

 
2. We focus on describing the data points of interest but omit how to find those data points through optimization of 
loss functions. 

about:blank
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Traditional statistical algorithms employ intuitive formulations, which produce results that are innately 

explainable. ML algorithms may have higher predictive accuracy than these traditional methods, but, because 

of their complexity, they are often considered incomprehensible black-boxes. This can hamper the 

acceptance of ML in statistical organizations. Therefore, as ML becomes more common in the production of 

official statistics, the QF4SA recommends that if complex algorithms are used in any phase of output 

production, the official statisticians putting these algorithms in place must not only focus on minimizing the 

prediction error but also make a strong effort to achieve explainability by adopting some of the methods 

outlined above. 

3.0 Accuracy 

In the context of ML, we note that there may be some confusion when discussing accuracy: the term 

“accuracy” is used for a specific performance indicator in classification and ML (namely the fraction of 

correctly classified data points). However, in this section, we will present a much wider concept of accuracy 

and list several indicators to calculate it accordingly, with a special focus on ML. 

 

We also note that, depending on the variables involved, measures of accuracy could take on different forms. 

For continuous variables, the MSE may be used to measure accuracy, with the bias squared component to 

quantify the effects of measurement errors. Other measures include mean absolute deviation, mean 

absolute relative deviation and distributional measures such as the Kullback–Leibler deviation. For 

categorical variables, accuracy may be measured by the misclassification rate or other measures of 

agreement between predicted and observed classes (e.g., informedness, markedness, F1 score, Matthews 

correlation coefficient or Cohen’s kappa), a deviance (-2*log likelihood), or the area under the receiver 

operating characteristic curve. 

3.1 Accuracy in official statistics 

Accuracy has many attributes, and, in practical terms, there is no single aggregate or overall measure of it. 

Of necessity, these attributes are typically measured or described in terms of the error, or the potential 

significance of error, introduced through individual sources of error. 

 

Accuracy can be said to relate to the concept of measuring the distance between the estimate (output) and 

the true value in an appropriate way. The closer the estimate is to its true value, the more accurate it is. We 

note that the deviation may be structural (bias) or random (variance). 
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For every framework, qualifying comments are common. For instance, the Australian framework states, “Any 

factors which could impact on the validity of the information for users should be described in quality 

statements” (ABS 2009). The Canadian framework states, “It should be assessed in terms of the major sources 

of errors that potentially cause inaccuracy. The accuracy of statistical estimates is usually quantified by the 

evaluation of different sources of error, where the magnitude of an error represents the degree of difference 

between the estimate and the true value” (Statistics Canada 2017).  

 

These comments relate to the concept of measuring the distance between the estimate and the true value 

of the target parameter and refer to the closeness between the values provided and the (unknown) true 

values. This difference is called the error of the estimate, and “error” is thus a technical term to represent 

the degree of lack of accuracy.  

3.2 Importance of accuracy 

The mandate of many NSOs includes developing, producing and disseminating statistics that can be 

considered a reliable portrayal of reality. To ensure the high quality of these statistics, most NSOs have 

developed quality frameworks that cover the statistical outputs, the processes by which they are produced 

and the organizational environment. One of the most important components of every quality framework is 

accuracy, which is related to how well the data portray reality and has clear implications for how useful and 

meaningful the data will be for interpretation or further analysis. The concept of accuracy is defined across 

several frameworks in similar ways; the common fundamental notion is the closeness of the estimate to the 

true value. 

 

Many measures of accuracy are available, each tailored to the particular estimation method being used and 

the situation (e.g., the type of data, the type of target parameter). Therefore, measures of accuracy can 

change according to the process and the target of the estimator. This target may refer directly to (G1) the 

data elements or (G2) aspects about the distribution, as in the case of imputation. In addition, a common 

objective of statistical surveys is to estimate a set of parameters of the target finite population. Therefore, 

within a quality framework, (G3) the accuracy of the estimates of these parameters is generally also 

considered a key measure of quality. In all of these cases, the purpose of the measure is to quantify the 

closeness of the estimate to the true value.  

 

It is important to underline that the existing literature on the performance of an algorithm suggests 

considering two different aspects when evaluating an estimator (e.g., Hand 2012): 

a) In choosing the estimator for the job, one must consider the choice of predictor variables, the 

estimation of parameters, the exploration of transformations and so on. In this view, when choosing 
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among different estimators, a performance comparison is necessary to choose the most efficient one 

for the job.  

b) After an estimator has been chosen, the estimator’s ability to predict the true values of new data must 

be assessed.  

 

In official statistics, it is necessary to add an additional aspect to point (b) above: 

c) When the final estimate is released, an estimate of its uncertainty is required. 

 

Therefore, the question naturally arises about which method should be adopted for a particular problem. 

The answer, of course, depends on what is important for the problem; different estimation methods have 

different properties, so a choice should be made by matching these to the objective. 

3.3 Accuracy of supervised machine learning for classification and regression 

As defined before, accuracy is meant to measure the closeness of an estimate to the true value. This means 

it depends on the estimation method under study. Therefore, before going into detail on measures of 

accuracy, we first set the context of how ML algorithms are typically used. 

3.3.1 Training, validating and testing principle 

To set the context, it is important to describe, in general terms, how the process of estimation and prediction 

is performed within a supervised ML approach. Suppose that there is a set, S, of labelled data 

𝑆: {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁)}, which belong to two spaces, i.e.,𝑥𝑖 ∈ 𝑾and𝑦𝑖 ∈ 𝑸. That is, S is a set of observations 

of given variables X and Y that take on values over the given spaces. In ML, the existence of a function linking 

the variables in the two sets is presumed, 

Y= f (X). 

An ML algorithm estimates the mapping function f (with 𝑓) from the input to the output. The goal is to 

approximate the mapping function so well that, when there are new input data (X), it is possible to predict 

the value of the output variable (Y) for these data. Depending on the nature of the spaces (and thus the 

variables within), we differentiate the task as follows. If the output space consists of a finite number of 

elements, then the task is called classification. Otherwise, the task is called regression. In less technical terms, 

if the output variable is quantitative or numeric, the learning task is called regression; if it is qualitative or 

categorical, the learning task is called classification.  

 

Regardless of whether the task is regression or classification, ML algorithms will attempt to learn the 

relationship between X and Y based solely on the available data observed in S. As a result, ML algorithms can 

be much more flexible than traditional modelling methods as they do not tend to presuppose particular 
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relationships between X and Y. Of course, as algorithms become more flexible, the problem of overfitting 

must always be kept in mind, i.e., the possibility that a learned model fits very well on the observed data 

(perhaps because it even interpolates the data) but generalizes poorly to as-yet-unseen data. Using pre-

specified models with controls to avoid unnecessary complexity (e.g., very high dimensional polynomial 

terms)can reduce the danger of overfitting. However, ML simply tries to best estimate the mapping function, 

so it does not have such a restriction. Usually, the class of possible models is much larger and can contain 

high-order polynomials, which are susceptible to overfitting to the observed data. Regularization, stopping 

rules and the evaluation of the learned model on test datasets that have not been used during the learning 

process are schemes to deal with this potential problem, and they help improve the generalizability of 

estimators or predictors. Therefore, an ML model should be learned in the following way: the set of available 

data is split randomly into several (ideally independent) subsets, S ≡ A ∪ V ∪ T. For every set, the data in S 

are split accordingly, i.e., some (𝑥𝑖 , 𝑦𝑖) belong (not necessarily only) to A, some to V, some to T (see Figure 

3.1). Note that Figure 3.1 is for illustrative purposes and does not suggest an optimal number of validation 

or testing sets or a ratio between the two. 

- The first set, 𝐴, is for training the model (blue box). 

- The second set (or sets), 𝑉(orange boxes), is used to find the best model parameters (e.g., the k in a 

k-nearest-neighbour approach, or the cost parameter [C]in an SVM approach). 

- The third set (or sets), 𝑇 (green boxes), is used to simulate what will happen when we apply the 

finally learned model to new, as-yet-unseen data. 

The random attribution of units to A, V and T is important to avoid concept drift, as explained by Efron (2020). 

The final estimate 𝑓 of the function 𝑓is always obtained on the training set𝐴 (in combination with validation 

sets or not) and assessed on the test set or sets. Having more than one orange and more than one green 

subset not only allows for point estimates for the accuracy measures, but also enables an estimate of their 

variance. 

 

 

Figure 3.1 Training, validation and test sets 

 

Training set A 
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Test set 
Test set 
Test set 
Test set 
Test set 
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Test set 
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The set-up described in Figure 3.1 is the best way to split the set S, but, for various reasons, practitioners may 

choose other ways. Often, when there is just one validation set (in orange), bootstrapping or cross-validation 

is used on this single validation set to simulate the ideal situation, in which there are multiple validation sets. 

At times, because of a lack of data, there is no validation set. In this situation, if optimal values for the 

parameters have to be found, this can be done via cross-validation or bootstrapping within the training data. 

 

The simplest and most commonly used version is to learn some models based on one training set (perhaps 

with cross-validation to specify some parameters) and to test them on only one test set (or bootstrap samples 

are created to provide multiple test sets to approximate the situation above). By repartitioning S into A and 

T multiple times, we have the opportunity to train and test the different algorithms or parameters of the 

algorithms on multiple datasets, thus showing us their performance in choosing the most efficient algorithm 

or parameters. 

3.3.2 General approach for assessment of accuracy 

Following Hastie et al. (2009), we will provide some details on this topic. Once the estimate of the function, 

𝑓, is obtained on the training sample A, a loss function is usually considered in order to calculate the error of 

predicting with regard to observed values. Typical examples of loss functions for when the variable Y is 

numeric include the following: 

𝐿 (𝑌, 𝑓(𝑋)) = (𝑌 − 𝑓(𝑋))2 (𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟) 

𝐿 (𝑌, 𝑓(𝑋)) = |𝑌 − 𝑓(𝑋)|  ( 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟). 

In a classification situation, when the variable Y is discrete, a simple loss function is the zero-one loss function 

given by 

𝐿 (𝑌, 𝑓(𝑋)) = 𝐼(𝑌 ≠ 𝑓(𝑋)). 

The assessment of an ML approach goes through the evaluation of a loss function that indicates the ability 

of the given algorithm to perform as well as possible in predicting the output given new data, as follows: 

𝐸𝑟𝑟𝐴 = 𝐸[ 𝐿 (𝑦, 𝑓(𝑥))| 𝐴 ] 

 

where (x,y) is a data point drawn from the joint distribution of (X,Y). Note that this error is conditional on the 

training set, A, and this error is often estimated by 

𝐸𝑟𝑟̂𝐴 =
1

𝑛
∑ 𝐿 (𝑦𝑖 , 𝑓(𝑥𝑖))

𝑛

𝑖=1

 

 

where (𝑥𝑖, 𝑦𝑖) are points in the test set T of size n. If we average over all possible training sets, A, we obtain 

the expected error 
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𝐸𝑟𝑟 = 𝐸𝑨⊂𝑺𝐸[ 𝐿 (𝑌, 𝑓(𝑋))| 𝐴]. 

The choice of which error to calculate depends on the situation at hand. If the general performance of an ML 

algorithm is of interest, it is necessary to estimate Err, which gives some protection from a poorly constructed 

training set. Furthermore, Err gives an impression of the robustness of an approach when the input data vary 

slightly. Fortunately, cross-validation seems to estimate Err well (Hastie et al. 2009) if A is a representative 

dataset. 

 

However, when a particular ML model (a predictor, an estimator) has already been learned, it has been 

learned based on a concrete training dataset A, so ErrA has to be calculated to get an impression about the 

future performance of this particular ML algorithm. This is particularly useful when comparing algorithms but 

one should note that if the dataset A is not representative, then Err should also be calculated to get an idea 

of the performance of the ML model(s) across different possible training datasets. 

 

3.3.3 Variance 

One common point of criticism of ML concerns the question of how to measure the uncertainty of the 

outputs. Besides the closeness of computations or estimates to the exact or true values (which can, for 

example, be expressed by the bias), statisticians also consider the variance of an estimator. This can be used 

to calculate confidence intervals, or the uncertainty of predictions, which can be used to calculate prediction 

intervals. In parametric model-based statistics, formulae are usually available for these quantities. The 

estimated variances of some traditional estimators can be written down in closed formulae; for example, if 

logistic regression is used, confidence intervals for the parameters and prediction intervals for the predictions 

themselves are available. As there is currently a lack of mathematical statistical theory for some ML 

algorithms, results like these cannot be produced at this time for those approaches without making 

additional assumptions. We note that assumptions are also required in traditional methods. However, in the 

case of binary classification, Scholtus and van Delden (2020) have derived estimators of bias and variance for 

estimates of counts, proportions, differences of counts and growth rates. Their context assumes a binary 

classifier is used, and the resulting classification is used to produce the estimates mentioned above. 

 

In the context of both ML and traditional statistics, resampling methods such as the jackknife (Quenouille 

1956), cross-validation (Stone 1974) and the bootstrap (Efron 1979) have been developed and can be used 

to quantify the uncertainty on the three levels, (G1) to (G3), mentioned above. Wolter (2007) presents an 

introduction that focuses on the survey sampling context, while studies in the classification and regression 

context include those of Kim (2009) and Borra and Di Ciaccio (2010), respectively. Of course, the suitability 
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of using these resampling methods for the algorithm and data at hand has to be demonstrated before they 

are used. This is emphasized here because there are situations where, for example, the empirical bootstrap 

does not deliver suitable results (e.g., Bickel and Freedman 1981). However, their examples of bootstrap 

failures are unlikely to occur in official statistics. Care, however, needs to be exercised to ensure that the 

dataset to which resampling methods are applied are representative of the population on which valid 

inference is to be made. Next, we present some details on how cross-validation and bootstrap samples can 

be used to evaluate statistical algorithms. 

 

K-fold cross-validation 

 

K-fold cross-validation uses part (or a fold) of the data to train the model and another fold to test (or validate) 

it. This is done by splitting the data randomly into K roughly equal folds. The model is trained on K-1 of these 

folds and then tested (or validated) on the k-th fold (the one not used for training), and the prediction error 

is calculated. This is repeated for k=1, …, K, and the K prediction errors obtained are averaged. More formally, 

the process is as follows: 

- Let 𝑓−𝑘(𝑋) be the prediction of Y based on the model obtained when the k-th fold is omitted. 

- The estimated conditional training error based on using the k-th fold as test data is then 

𝐸𝑟𝑟̂𝐴
−𝑘 =

1

𝑁𝑘
∑ 𝐿 (𝑦𝑖 , 𝑓−𝑘(𝑥𝑖))

(𝑥𝑖,𝑦𝑖)𝜖𝐹𝑘

 

 
where Fk is the set of Nk units in the k-th fold. 

- Repeat for k=1, …, K. 

- The estimate of the expected error is then 

𝐸𝑟𝑟̂𝐶𝑉 =
1

𝐾
∑ 𝐸𝑟𝑟̂𝐴

−𝑘

𝐾

𝑘=1

. 

 

Typical values for K are, according to the literature, 5 and 10.  

 

As mentioned by Hastie et al. (2009, 249), evaluating the variability of the cross-validation error estimates is 

important. This can be done by calculating 

𝑉𝑎𝑟̂𝐶𝑉(𝐸𝑟𝑟̂𝐶𝑉) =
1

𝐾 − 1
∑(𝐸𝑟𝑟̂𝐴

−𝑘 − 𝐸𝑟𝑟̂𝐶𝑉)
2

𝐾

𝑘=1

 

 

as an estimate of the variance of the expected error rate, Err. However, note that there is no unbiased 

estimator for the variance of the cross-validation estimator (Bengio and Grandvalet 2004). 
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Note that there are also the predictions, 𝑓−𝑘(𝑥𝑖), for all of the xi, so it is possible to formally calculate an 

estimate of the variance of prediction, when Y is continuous, 

𝑉𝑎𝑟̂𝐶𝑉(𝑝𝑟𝑒𝑑) =
1

𝑁 − 1
∑ ∑ (𝑦𝑖 − 𝑓−𝑘(𝑥𝑖))

2

(𝑥𝑖,𝑦𝑖)∈𝐹𝑘

𝐾

𝑘=1

 

 

where 𝑁 = ∑ 𝑁𝑘𝑘  is the total size of the set S. If the folds are of equal size, that is, Nk=N/K, then under a 

squared error loss function, 𝑉𝑎𝑟̂𝐶𝑉(𝑝𝑟𝑒𝑑) is equivalent to 𝐸𝑟𝑟̂𝐶𝑉 except for a factor of N versus (N-1). It is 

also possible to look at the residuals, (𝑦𝑖 − 𝑓−𝑘(𝑥𝑖)), to come up with something similar to empirical 95% 

prediction intervals, but, again, there is the limitation that the probability distribution of the cross-validation 

estimator is not known exactly. Vanwinckelen and Blockeel (2014) provide a critical discussion of cross-

validation. 

 

Bootstrap 

 

For the bootstrap, we draw a simple random sample of N units with replacement from the original training 

set, 

𝐴𝑏 = {(𝑥1
∗, 𝑦1

∗), … , (𝑥𝑁
∗ , 𝑦𝑁

∗ )}. 

Let 𝑇𝑏 be the set of units that are not selected in the b-th bootstrap sample, and let 𝑓𝑏(𝑥) be the model 

obtained from the b-th bootstrap training sample. Use 𝑇𝑏 to test the model and calculate the estimate of the 

error as follows: 

𝐸𝑟𝑟̂𝑇𝑏

𝑏 =
1

𝑁𝑏
∑ 𝐿 (𝑦𝑖, 𝑓𝑏(𝑥𝑖))

(𝑥𝑖,𝑦𝑖)𝜖𝑇𝑏

, 

 

where 𝑁𝑏 is the number of units in 𝑇𝑏. This is repeated B times (say 100 or more), and the estimated expected 

error is then 

𝐸𝑟𝑟̂𝐵𝑆 =
1

𝐵
∑ 𝐸𝑟𝑟̂𝑇𝑏

𝑏

𝐵

𝑏=1

. 

The following quantities can also be calculated: 

𝑉𝑎𝑟̂𝐵𝑆(𝐸𝑟𝑟̂𝐵𝑆) =
1

𝐵 − 1
∑(𝐸𝑟𝑟̂𝑇𝑏

𝑏 − 𝐸𝑟𝑟̂𝐵𝑆)
2

𝐵

𝑏=1

 

 

𝑉𝑎𝑟̂𝐵𝑆(𝑝𝑟𝑒𝑑) =
1

𝑁∗ − 1
∑ ∑ (𝑦𝑖 − 𝑓−𝑘(𝑥𝑖))

2

(𝑥𝑖,𝑦𝑖)∈𝑇𝑏

𝐵

𝑏=1
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where 𝑁∗ = ∑ 𝑁𝑏
𝐵
𝑏=1 . In addition, prediction intervals can be calculated. Note that there are several 

situations where this “standard version” of the bootstrap is not suitable for estimating the variance of a 

quantity—for example, in time series. Other versions have been developed over the years (see, e.g., Wolter 

[2007, 194] for some references). The proposed variance estimators borrow heavily from traditional 

statistical methods, and their theoretical properties must be explored. Therefore, we caution users on their 

use until their properties are fully understood. 

 

Resampling techniques are widely used to estimate variances in several situations. Many implementations 

(e.g., in R or Python) already provide them as standard procedures. Nevertheless, these techniques, which 

are surely necessary when using ML, also have some disadvantages and pitfalls. It is important to be aware 

of them. For example, it is highly recommended to carefully check which version of the bootstrap, under 

which assumptions, is appropriate for the individual problem at hand in official statistics. Also, be careful 

with inference (i.e., with statistics beyond exploration and description) using “confidence intervals” or 

“statistical tests” based on cross-validation. 

3.4 Common measures for evaluating statistical algorithms or their results in machine learning 

3.4.1 When estimating the target parameter (G3) 

A conceptual framework for accuracy is the total survey error (TSE), which describes, ideally, the 

accumulation of all errors that may arise in designing, collecting, processing and analyzing survey data (Platek 

and Särndal 2001; Biemer 2010; Groves and Lyberg 2010). Commonly, the error components for a statistical 

process are listed as follows. 

- Sampling error: This is the part of the difference between a population value and an estimate thereof, 

derived from a random sample, that is due to only a subset of the population being enumerated. 

- Non-sampling error: This is an error in survey estimates that cannot be attributed to sampling 

fluctuations. Examples of non-sampling error include coverage error, measurement error, 

nonresponse error, processing error and model assumption errors.  

Thus, the TSE accumulates all errors that can arise in sample design, data collection, processing and analysis 

of survey data, and it comprises both sampling and non-sampling errors. Technically, a number of measures 

may be used to indicate accuracy through the definition of a proper loss function. To quantify the TSE for the 

estimate of a (usually continuous) population target parameter, the most common metric used is the MSE 

(which is the square root of the sum of squared bias and the variance). 
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3.4.2 When the focus is on distributional accuracy (G2) 

Distributional accuracy is an important aspect to consider when using statistical algorithms to impute for 

missing values. In addition to the prediction of the true unknown missing value, relationships between the 

variables, or distributional accuracy, must be considered. At least in higher dimensions, distributional 

accuracy cannot be measured easily by only one number. However, in the univariate situation, well-known 

tests (such as the Kolmogorov–Smirnov test) can check whether two distributions are significantly different 

from each other. In the multivariate case, interactions of the variables have to be considered. It might be 

necessary to calculate correlations between the dimensions, but also to calculate extreme values, moments 

and quantiles separately per dimension and to recombine them in a specified sense. If all this occurs within 

an imputation step, the number of broken plausibility or edit rules for imputed values (and, if possible, the 

impact on the downstream task) and the accuracy (ideally also the variance) of the estimation of the target 

parameters are also important indicators. When distributional accuracy is measured, the Jensen–Shannon 

metric appears to be appropriate, as outlined by Prasath et al. (2019), because of its versatility for handling 

multivariate distributions with continuous and categorical variables. 

3.4.2 When the focus is on unit wise predictive accuracy (G1) 

In the pilot studies undertaken within the ML project of the United Nations Economic Commission for 

Europe’s High-Level Group for the Modernisation of Official Statistics and the literature (e.g., Japkowicz and 

Shah 2011; Pepe 2003; Stothard 2020; Hand 2012), the following measures are commonly used to assess the 

success of ML algorithms: 

- in the case of regression, root MSE (absolute or relative), mean error, mean absolute or relative error, 

R² or the standard error of regression 

- in the case of classification, predictive accuracy, recall, precision and F1 score per class or on macro 

levels, G measure, Matthews correlation coefficient, and awareness of the consequences of the 

different misclassifications (see section 2.2 on the Importance of explainability). 

The references mentioned above contain many more measures and more discussion about them. A critical 

point in the case of classification, for instance, is how sensitive measures are to class imbalances (see, e.g., 

Luque et al. 2019) or whether they need a prespecified threshold in the decision function. In the latter case, 

areas under curves are used to assess classifiers—for example, the area under the receiver operating curve 

and the area under the precision recall curve (see Hand [2012] for more). Note that when these measures 

are estimated for a particular task to evaluate how well the learned predictor works, these numbers are valid 

only for tasks in the same context and based on new data from the same distribution (or the same data-

generating process) as the training and test data used for learning and assessing the predictor. This underlines 

the importance of having training and test data that are representative of the underlying population. This 
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implies that the accuracy of an ML model must be continuously monitored and underlines the importance of 

having representative training and test data of the population being imputed for. 

4.0 Reproducibility 

4.1 Dimensions of reproducibility 

According to a subcommittee of the U.S. National Science Foundation (Stodden et al. 2018) on replicability 

in science, “reproducibility refers to the ability of a researcher to duplicate the results of a prior study using 

the same materials as were used by the original investigator. That is, a second researcher might use the same 

raw data to build the same analysis files and implement the same statistical analysis in an attempt to yield 

the same results…. Reproducibility is a minimum necessary condition for a finding to be believable and 

informative.” 

 

It is important to recognize the three dimensions of reproducibility, namely, methods reproducibility, results 

reproducibility and inferential reproducibility (Goodman et al. 2016). 

- Methods reproducibility is defined as the ability to implement, as exactly as possible, the 

experimental and computational procedures, with the same data and tools, to obtain the same 

results. This is the same as the minimum necessary condition described in the U.S. National Science 

Foundation subcommittee recommendation. 

- Results reproducibility is defined as the production of corroborating results in an independent study 

(i.e., with new data) that followed the same experimental methods. This has previously been 

described as replicability. 

- Inferential reproducibility is defined as making knowledge claims of similar strength from a study 

replication or reanalysis. This is not identical to results reproducibility, because not all investigators 

will draw the same conclusions from the same results, or they might make different analytical choices 

that lead to different inferences from the same data.  

 

For the QF4SA, recognizing that it is not feasible for official statisticians to undertake new data collection to 

corroborate initial findings, it is not proposed to adopt results reproducibility in official statistics. 

 

Consistent with the Fundamental Principles of Official Statistics, methods reproducibility has been invariably 

embraced by NSOs, and its adoption in the QF4SA when using statistical algorithms to produce official 

statistics is expected to receive overwhelming support. 
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For inferential reproducibility, as multiple algorithms can generally be brought to bear on data analysis, there 

would be multiple ways to reanalyze the data. Official statisticians, when deciding to use a particular 

algorithm with a decided set of assumptions for analysis, have to be reasonably satisfied that the results from 

the chosen analysis can be corroborated by analyses using alternative but applicable algorithms and 

assumptions. This is particularly important for analytical inferences where general assumptions inherent in 

the algorithms have to be made about the data.  

 

What is the distinction between accuracy and reproducibility? Accuracy is about having large accuracy 

metrics (e.g., small MSEs for continuous variables or large F1 scores for categorical variables), given a dataset, 

associated with the algorithm. Inferential reproducibility occurs when the MSE or F1 score of the difference 

between results obtained from the same dataset—from different choices of study designs, experiments or 

analytical techniques—is not statistically significant. In other words, inferential reproducibility is an attribute 

to show whether we can get essentially the same result (within a margin of error, and using algorithms 

correctly), not whether that result is good. 

 

The following example illustrates the difference between accuracy and reproducibility: 

 

Suppose response Y depends on predictor X1 but not X2. We observe Y and X2 and build a model to 

predict Y from X2. That model concludes (correctly) that X2 is irrelevant in predicting Y. In that case, 

we would have poor prediction accuracy (high MSE for predictions of Y). As the same inaccurate 

predictions of Y would be obtained using the same model and assumptions, the analysis is methods 

reproducible. In addition, the result that X2 is irrelevant in predicting Y is inferential reproducible 

because different models used to model Y on X2 will show the same result, provided these models are 

thoughtfully and correctly applied. For example, a bad choice of hyperparameter or other 

inappropriate modelling decision could lead a model to overfit and incorrectly infer a relation between 

Y and X2.   

 

In the above example, we have shown that reproducibility is an attribute to show whether we can get the 

same result (methods reproducibility) or corroborating result (inferential reproducibility), not whether that 

result is good. 

4.2 Importance of reproducibility for official statistics 

Reproducibility builds and enhances trust in official statistics. The third principle of the Fundamental 

Principles of Official Statistics, accountability and transparency, adopted by the United Nations Statistical 

Commission in 2014, stipulates that “To facilitate a correct interpretation of the data, the statistical agencies 
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are to present information according to scientific standards on the sources, methods and procedures of the 

statistics.” (UN 2014). 

 

Gleser articulated an underlying rationale for reproducibility in 1996. When commenting on DiCiccio and 

Efron’s (1996) seminal paper on bootstrap confidence intervals published in Statistical Science, Gleser said 

the “first law of applied statistics” is that “two individuals using the same statistical method on the same data 

should arrive at the same conclusion.” (Gleser 1996). 

 

In the academic world, to ensure this first law of applied statistics is followed, many journals have revised 

author guidelines to include data and code availability. For example, starting February 11, 2011, the journal 

Science requires the following: 

 

“All data necessary to understand, assess, and extend the conclusions of the manuscript must be 

available to any reader of Science. All computer codes involved in the creation or analysis of data 

must also be available to any reader of Science. After publication, all reasonable requests for data 

and materials must be fulfilled. Any restrictions on the availability of data, codes, or materials, 

including fees and original data obtained from other sources (Materials Transfer Agreements),must 

be disclosed to the editors upon submission.” 

 

Trust is the currency of official statistics. While many factors contribute to building trust, an important one, 

as outlined in the first of the Fundamental Principles of Official Statistics, is impartiality. Impartiality can 

largely be demonstrated by transparency in the sources, methods and procedures used to compile official 

statistics. Such transparency allows independent analysts or researchers to assess the integrity of—and, 

where possible, reproduce and verify—published official statistics.  

4.3 Demonstrating reproducibility 

Those who develop statistical algorithms to compile official statistics (e.g., methodologists, data scientists 

and analysts) are encouraged to assess the methods and inferential reproducibility of their algorithms before 

adoption. Once the reproducibility dimension of the algorithms has been confirmed during the development 

stage, they can be put into production, and no further reassessment would be considered necessary. 

 

Methods reproducibility refers to providing enough details about algorithms, assumptions and data so the 

same procedures could be exactly repeated, in theory or in practice. Documenting methods reproducibility 

therefore requires, at minimum, sharing analytical datasets (original raw or processed data), relevant 

metadata, analytical code and related software. For confidentiality reasons, NSOs generally cannot share 
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identifiable raw data for independent analysis. It is therefore proposed that the analyses be replicated in-

house and by another individual, who should be at arm’s length from the original researcher, to assess 

reproducibility. 

 

For inferential reproducibility, methodologists should test corroboration of the results from the chosen 

algorithm with a small set of applicable algorithms and different assumptions. While there are no hard and 

fast rules to determine what constitutes corroboration, judgment should be applied when examining the 

results that are “different” from those of the chosen algorithm and assumption. For example, are the 

differences statistically significant, i.e., not due to random fluctuations? If they are, can they be explained 

(e.g., because of an improvement in efficiency), and can the explanation be supported by statistical theory? 

 

Lastly, it is also proposed that the outcomes of methods and inferential reproducibility be documented for 

longevity and, where possible, published as part of the quality declaration statement normally released 

together with the official statistical output. 

 

Clearly, reproducibility of statistical algorithms is fundamental for upholding trust in official statistical 

outputs. While three types of reproducibility are recognized in this section, we propose NSOs adopt methods 

and inferential reproducibility to support their choice of statistical algorithms in producing outputs. 

5.0 Timeliness 

5.1 Timeliness for statistical algorithms 

The quality guidelines and frameworks of many NSOs (Statistics Canada, the Australian Bureau of Statistics, 

the Office for National Statistics, and the Organisation for Economic Co-operation and Development) define 

timeliness as the length of time between the reference period and the availability of information. The QF4SA 

is advocating for development and processing time to be considered as well as the normal timeliness 

measures. More broadly, the concept of timeliness should be expanded to cover the period of time between 

a need for data and the release of the information to meet that need. With the increased use of large 

datasets, the speed at which ML algorithms can be trained and run could lead to significant improvement in 

timeliness. This is particularly true for processes that are typically done manually, such as coding. Coding 

applications can be developed quickly using ML, particularly if past manually coded data can be used as 

training data. In addition to being fairly quick to set up, once developed, ML algorithms can process vast 

amounts of data in a short time. Compared with manual processes, ML algorithms could lead to significant 

savings in processing time. 
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5.2 Importance of timeliness 

Official statistics are useful only when they are relevant, and this means that they need to be available in a 

timely fashion. Indicators of an economic downturn are not relevant if they are available only six months 

after the downturn has occurred. Many quality frameworks define timeliness as the length of time between 

the reference period and the availability of information. However, for the QF4SA, we consider two additional 

dimensions of timeliness: 

- the length of time it takes to develop or put in place a process 

- the amount of time it takes to process data. 

These two dimensions deserve consideration, as we feel that ML can offer some advantages over commonly 

used methods that can lead to improvements in the commonly used definition of timeliness. 

5.3 Responsibility of ensuring timeliness 

Typically, statistical algorithms, be they ML or other commonly used methods, would be developed or chosen 

collectively by methodologists, data scientists and analysts. Depending on the problem at hand, the work 

should also involve informatics specialists and subject-matter experts. Timeliness considerations are most 

likely evaluated during the development phase of a project. However, during redesigns or in continuous 

improvement contexts, this aspect of timeliness should be considered. 

5.4 Aspects to consider 

Clearly, measuring the time required in production to develop, set in place and use something is 

straightforward. In this section, we list some aspects that need to be considered during the evaluation. 

- Data cleansing  

It is highly likely that all potential methods will require that similar data cleansing be performed. 

However, if certain methods require specialized preparation of input data, for some reason, then this 

should be recorded. 

 

- Informatics infrastructure 

If the method requires an informatics infrastructure that is not currently available, then the time 

required to set up such an environment should be considered. The time required to put it in place 

should not be underestimated. 

 

- Preparation of training data 

Supervised ML algorithms require high-quality training data and, depending on the method, a large 

quantity of data can be required. Existing data should be considered for training data, if appropriate. 



20 
 

Note that some traditional approaches also need auxiliary data, which can be time-consuming to 

obtain. For instance, non-ML coding algorithms typically need a data dictionary that is complete, 

accurate and up-to-date, but that can be very time-consuming to create. 

 

- Evaluation of data quality 

Many well-established methods have processes for evaluating data quality. For instance, a well-

developed theory exists for variance because of imputation. However, new approaches may not have 

well-defined processes to estimate quality indicators and may rely on resampling-type algorithms 

(e.g., cross-validation or bootstrap) to evaluate quality. Depending on the algorithm, these 

resampling methods could take significant time to compute. 

 

- Scalability of the approach 

As data sources continue to grow in size, the time required to process large datasets should be 

considered. Manual processes are not a viable choice when the number of records to process 

becomes large, so ML algorithms may be preferable. 

6.0 Cost effectiveness 

6.1 Cost effectiveness for statistical algorithms 

Cost effectiveness can be defined as the degree to which results are effective in relation to the costs of 

obtaining them. Results in statistics are mainly measured in terms of accuracy; therefore, it is natural to link 

cost effectiveness to the accuracy dimension and try to measure it from this perspective. In this section, we 

will define cost effectiveness as the accuracy (measured by the MSE for continuous data and F1 score or 

similar metrics for categorical data) per unit cost.  

 

This is an operative definition that makes comparisons between different methodologies possible. In the case 

of ML, an organization may compare the accuracy of an ML algorithm with the accuracy of a traditional 

method for the same statistical process, expressing both approaches in terms of their unit costs. The 

assessment of accuracy in ML is usually based on the consideration of a loss function; in traditional methods, 

uncertainty is expressed by the variance of an estimator, but resampling methods may be used as well (see 

Section 3.3).The same comparison could be made, of course, between two or more ML algorithms if the 

objective were to choose the most cost-effective one, all other aspects considered. However, some practical 

issues may need to be considered with this method, especially related to which costs should be included in 

the analysis.  
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Whenever a new method is introduced in a production process, an organization will have to face some initial 

expenses to implement it. Such costs may be broadly defined as fixed costs, as they usually represent costs 

that must be paid to launch the infrastructure for the new method. ML, which can rely heavily on the 

underlying information technology (IT) infrastructure, may pose some challenges in this regard. In fact, fixed 

costs for ML mainly include the IT-related costs for acquiring new software and hardware and the costs of 

training the organization’s staff. These are different from the other category of costs that can be identified—

ongoing costs—which derive from regular efforts to keep the whole system running and up to date. The 

following table lists the possible costs of an ML project. It may be useful to note that traditional methods also 

present fixed costs. However, NSOs have been investing in these over many years, so additional fixed 

expenditures are not usually required for them. 

 

Table 6.1 Potential additional fixed and ongoing costs for machine learning adoption 

Cost component Type Purpose 

Information technology 

(IT) infrastructure 

Fixed Acquiring necessary hardware and software 

Cloud storage Ongoing Acquiring necessary cloud storage space 

IT maintenance Ongoing Maintaining IT infrastructure 

Initial staff training Fixed Training current staff on ML; may include hiring new staff 

Ongoing staff training Ongoing Keeping staff up to date withnew ML developments  

Data acquisition Fixed/ongoing Acquiring and processing new data sources 

Quality assurance Ongoing Conducting quality assurance and control 

 

The details of these components will be explained later in this section. For now, it should be noted that ML 

methods, by themselves, are not necessarily more expensive than traditional methods. In some cases, as 

they generally rely on less theoretical assumptions than classical statistics, they could be even simpler to 

implement and could be applied to traditional datasets without much difficulty. In such cases, where big data 

are not included, ML methods may present few additional costs. The elements shown in the table can be 

considered a starting point for comparing ML and traditional methods; such comparison can be made by (a) 

analyzing whether the running costs for ML methods are cheaper than those of traditional methods or (b) 

computing the number of years to recoup the investment needed for the extra elements outlined in the 

table. Finally, we note that fixed costs should not be associated with a single instance of implementing an ML 

algorithm (unless the NSO intends to implement a single instance of ML). Fixed costs should be spread over 

the number of ML algorithms under consideration and future possible applications. At some point, the costs 

of new ML instances will be nil. 
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6.2 Advantages of cost effectiveness 

The last decade has seen an explosion in data production, because of improvements in computer processing 

speed and innovations in communication networks. Official statistics have therefore been forced to compete 

with an increasing pool of data producers, while often being limited by tight budget constraints. Statistical 

offices are facing a challenge in meeting the required high-quality standards of official statistics with the 

resources that are made available to them. Cost effectiveness has guided many statistical institutes in recent 

years: the European Statistics Code of Practice, for example, dedicates its principle 10 to cost effectiveness, 

stating that resources should be used effectively. Current statistical processes may be revised to achieve the 

same or better levels of accuracy using sources or methodologies that would allow the organizations to save 

some costs; new data sources may be explored to save costs in data collection procedures. Indeed, cost 

effectiveness is one of the reasons behind the shift by NSOs from survey-centred data production to 

processes involving administrative and alternative sources of data. The introduction of ML can be seen as a 

further step in this evolution. 

6.3 Organizational considerations 

ML in official statistics is still a field under investigation, although it has shown promising results. However, 

every organization is different in terms of available budget and statistical production, so the convenience of 

introducing ML into current production has to be looked at on a case-by-case basis. If an organization is new 

to ML algorithms and to big data sources in general, it would probably need to implement a suitable 

infrastructure from the start. Therefore, it will have to take into account the start-up costs and evaluate them 

against its budget, the cost of the current production, and the expected accuracy and timeliness 

improvements. Fixed costs may represent the main challenge in this case and may take a toll on the 

organization’s budget, but they also have to be compared with the future savings that ML would grant. As a 

result, fixed costs could actually be considered an investment that would allow greater savings in the future. 

Such savings may depend on the characteristics of the statistical production itself, as some processes may be 

more suitable for a migration toward ML than others. A given organization may be involved in many projects 

that can easily—and beneficially—adopt an ML approach, while another organization may have too few such 

projects, in which case the initial investment would be harder to justify.  

6.4 The potential costs of machine learning 

As can be seen in Table 6.1, IT-related and staff-related costs are a big part of the costs linked to the adoption 

of ML. To illustrate these, two of the main advantages of ML methods—scalability and automation—are 

introduced.  
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Scalability implies that a procedure can be applied with no or few modifications to a larger scale—for 

example, to a bigger data source with a greater set of units or features. As noted earlier, ML methods per se 

do not necessarily require any additional effort in terms of computation or resources. However, when used 

in conjunction with big data, they can quickly become computationally intensive. ML algorithms are often 

based on iterative methods and, of course, the better the hardware, the faster such iterations will be. An 

organization’s existing infrastructure may require some adjustments (e.g., central processing units, graphics 

processing units, storage space) before it can be used for computationally intensive operations or large 

datasets. Furthermore, IT costs should also include the resources needed for cloud storage and computation 

in the cloud, which are usually ongoing costs. In conclusion, when planning to introduce ML in a statistical 

process, an organization could require an IT infrastructure that is optimized for a level above its current needs 

to accommodate potentially more intensive processing or bigger data sources. 

 

Automation, on the other hand, enables an organization to save on human resources. As listed in the table, 

the cost of training staff should be included in the initial costs of introducing ML methods, as the staff of 

statistical institutes is usually trained in classical statistics and may need appropriate training to use ML. This 

cost has to be sustained whether the application of ML is planned for small datasets or large datasets. 

However, the staff’s underlying domain knowledge and statistical preparation should ensure that such 

training isnot too extensive; consequently, the transition training costs may not be high. But, as the field of 

ML is subject to rapid innovation and its application in official statistics is still new, the need for continuous 

learning cannot be neglected. For this reason, staff training is also an ongoing cost.  

 

Once the fixed and ongoing costs of training are considered, automation should make it possible to save in 

terms of staff needed to execute operations. This should enable organizations to free up human resources 

for employment in other sectors of the statistical production cycle. In turn, the staff employed on ML 

procedures could then focus on aspects important for official statistics, such as explainability and the 

methods and inferential reproducibility of results. 

 

Lastly, the adoption of ML algorithms opens new possibilities for data collection and data sources. From an 

IT point of view, acquiring big data sources presents the challenges that were illustrated before: expansion 

of storage space, both local and in the cloud, improvement of hardware, and so on. Additionally, acquisition 

costs must also be factored in, as big data sources are often held by private companies. Such costs may be 

either fixed or ongoing, depending on the agreements with data providers. In such cases, of course, it is 

advisable for an organization to try to obtain a test dataset to assess its usefulness for the current production 

before committing to an agreement. It is also worth reiterating that some big data sources can be freely 

accessed, for example, through web scraping or open data portals. 
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From the elements described above, some tests can be formulated to include the various aspects of cost 

effectiveness into the assessment of accuracy. First of all, the accuracy per unit cost metric described in 

Section 6.1 could be regarded as a cost-effectiveness test, useful for investigating the costs linked to an 

accuracy improvement deriving from the adoption of a new method. For this purpose, this test should include 

only the variable costs in its assessment, especially if used to compare an ML method with a traditional one, 

for which fixed costs have probably already been paid in previous years. 

 

Another possible test focuses on the return on investment, which is useful to assess the fixed costs and the 

time needed to recoup the initial investment in ML. Two or more ML algorithms can be compared over a 

specific period of time (e.g., five years) to assess which offers more savings and whether such savings are 

enough to compensate for their introduction in the production process. 

 

An ML algorithm should be chosen only if both tests produce satisfactory results, that is, if the algorithm is 

cost effective and the cumulative savings it guarantees are bigger than the net present value of the 

investment in ML. 

 

The same ML and IT infrastructure can be—and usually is—shared between multiple ML procedures. This 

should happen as NSOs become more confident in ML methodologies and increase their adoption of ML. In 

this case, when the metrics are computed to evaluate the costs and savings of an ML implementation, fixed 

costs should be apportioned between the relevant algorithms. 

6.5 Conclusions 

The previous illustration of the potential costs of implementing ML should shed some light on the metric that 

was introduced at the beginning of the section, accuracy per unit cost. When this measure is computed, it 

can be convenient to differentiate between specific elements of the potential expenses, depending on the 

needs and the current state of the statistical organization. In other words, the accuracy per unit cost metric 

does not have a given single use, as it has to be considered in the context of each organization. For example, 

decomposing it into different cost components is useful to better assess potential savings and accuracy 

improvements against future ongoing costs. This would also help estimate the time needed to recoup the 

initial investment. 

 

Lastly, if ML allows an organization to improve the accuracy of its estimates while saving some resources, the 

question of where best to redirect these resources should be investigated. Of course, this is another case-by-

case question, and a general answer is impossible. In the context of official statistics, it is important to 
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highlight that the experimental nature of the processes and the novelty of some of the techniques may call 

for additional quality measures and controls. Since the mission of official statistics programs is to produce 

transparent, accurate and accessible data, it may be worth spending some of the additional resources to 

maintain regular quality assurance and quality control operations for the processes involving ML. This would 

ensure greater transparency for data users and give data producers deeper insight into the technical aspects 

of ML.  

7.0 Summary and recommendations 

 
National statistical offices (NSOs) around the world are modernizing, and many are looking at modern 

statistical algorithms as a significant part of their modernization journey. Modern statistical algorithms have 

plenty to offer in terms of increased efficiency; potentially higher quality; and the ability to process new data 

sources, such as satellite images. The challenge comes from deciding when modern algorithms should be 

used to replace existing algorithms. Many modern algorithms were developed in a prediction context and 

are designed to minimize prediction error. However, most algorithms currently used in official statistics were 

developed to produce inferentially correct outputs. Comparing methods developed under these two 

paradigms is not easy. 

 

The proposed Quality Framework for Statistical Algorithms (QF4SA) is a first attempt to lay down some 

groundwork to guide official statisticians in comparing algorithms (be they traditional or modern) in 

producing official statistics. The QF4SA’s five dimensions are applicable to traditional and modern algorithms 

and provide food for thought to official statisticians when choosing between different algorithms. Based on 

the QF4SA, the working group proposes the following recommendations: 

 

1) It is recommended that all five dimensions of the QF4SA be considered when deciding on the choice 

of an algorithm, particularly when choosing between traditional and machine learning (ML) 

algorithms. 

 

2) Given that explainability is a major barrier to wide acceptance of ML algorithms, it is recommended 

that NSOs explore and use the methods outlined in the Explainability section to help users 

understand the relationship between input and output variables. Data users’ understanding can help 

eliminate some of the black-box concerns associated with ML. This will contribute to increased 

acceptance of and trust in ML algorithms. 
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3) Ideally, NSOs should estimate the expected prediction error using methods such as cross-validation 

or other appropriate resampling methods. These methods are valid only if the training sets are 

generated from the data in the same way the data are generated from the population. This 

underlines the importance of properly constructed training sets. For instance, training data about 

only women should not be used to train a model to predict the income of men. Therefore, it is 

recommended that NSOs calculate the expected prediction error, as well as the prediction error, to 

protect against potentially poor-quality training data. In addition, it is recommended that high-

quality training data (data that are representative of the population in question) be created when 

applying supervised ML algorithms. NSOs may want to leverage their sampling expertise to research 

the creation of high-quality training data. 

 

4) Given the role that reproducibility plays in gaining the trust of data users, the QF4SA recommends 

that, as a minimum, NSOs take action to implement methods reproducibility. Inferential 

reproducibility should be carried out as well, when possible and desirable, limited to only the 

replication of the analysis using different but applicable algorithms and assumptions. We note that 

for inferential reproducibility, the results of a chosen method need only be corroborated by 

alternative algorithms or assumptions. They do not need to be the same. When the alternative 

algorithms or assumptions do not corroborate the original results, NSOs should ensure they 

understand why and determine whether the chosen method is warranted. 

 

5) Timeliness is covered by most, if not all, existing quality frameworks. However, the timeliness 

dimension commonly used is defined as the time between the end of the reference period and the 

availability of the information sought. For certain processes leading to the production of statistical 

outputs, it is recognized that modern algorithms could lead to significantly shorter development and 

processing times, in comparison with traditional algorithms. Examples of these processes include 

industry and occupational coding and image processing. Therefore, the QF4SA recommends that 

development and processing time be added to the commonly used concept of timeliness. 

 

6) A motivating factor of NSOs’ modernization is cost effectiveness. By considering alternative data 

sources, NSOs want to reduce collection costs and respondent burden. For some alternative data 

sources (e.g., satellite images), modern algorithms are the only available way to process them. When 

evaluating the cost of potential algorithms, NSOs must consider fixed costs, as well as ongoing costs. 

Examples of fixed costs include establishing information technology (IT) infrastructure and retraining 

employees to work with the new infrastructure. We note that fixed costs can be amortized over time 

or across projects. Examples of ongoing costs include IT maintenance, cloud storage for the data, the 
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cost of acquiring the data and processing time. Processing time in particular could be significantly 

reduced under certain circumstances by using modern methods. Given these costs, the QF4SA 

recommends that NSOs consider two aspects in particular when considering cost effectiveness: 

cheaper operating costs and time to recoup fixed costs. 
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