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A Quality Framework for Statistical Algorithms (QF4SA) 

Executive Summary 

To come. 

1.0 Introduction 

The aim of National Statistical Offices is to develop, produce, and disseminate statistics that can be 

considered as a reliable portrayal of reality (UNECE 2012). Quality is the degree to which a set of inherent 

characteristics of a statistic fulfils certain requirements (Eurostat 2014).These requirement are typically set 

out in a quality framework which is a set of procedures and systems that support quality assurance within 

an organisation and is meant to cover the statistical outputs, the processes by which they are produced, 

and the organisational environment within which the processes are conducted. Many widely accepted 

quality frameworks related to Official Statistics exist; for example, see the Australian Bureau of Statistics’ 

Data Quality Framework (ABS, 2009), the United Nation’s National Quality Assurance Framework (UNSD, 

2019), Eurostat’s Code of Practice of the European Statistical System (Eurostat, 2005) and Statistics 

Canada’s Quality Assurance Framework (Statistics Canada, 2017). 

 

Modern methods, such as machine learning (ML), are gaining popularity in the toolbox of the official 

statistician. In combination with modern hardware and software, these methods allow official statisticians 

to process new data sources such as text and images, to automate existing statistical processes and 

potentially to make inference without a sampling design. With this increased interest there is a need to 

consider a quality framework for statistical processes where these methods could be used.  

 

In a traditional estimation context, statisticians typically attempt to learn as much as possible about a 

scientific truth from observed data. As described in Efron (2020), the scientific truth can be represented as 

a surface and the observed data can be thought of as observations on the surface obscured with noise. 

Efron calls this the surface plus noise formulation. For example, a simple linear regression uses a 

formulation 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝜖𝜖 where the surface, or in this case the line, is represented as a linear function 

of a variable x and the response value, y, is observed with noise ε. Based on a set of observations (or data), 

the parameters of the line are estimated (e.g. using maximum likelihood or ordinary least square methods) 

to obtain the “estimated” surface.  

 

Machine learning, on the other hand, can be differentiated from the traditional estimation context by its 

focus on prediction as opposed to estimation. ML algorithms “go directly for high predictive accuracy and 
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not worry about the surface plus noise models” [Ibid.]. Rather than searching for a hidden truth about the 

underlying phenomenon that generated the data or characteristics of the population, the primary aim is to 

make predictions about individual cases. Note that this does not mean traditional statistical algorithms 

cannot be used for prediction. Once the parameters of a regression surface, or line, are estimated (i.e. 

𝛽𝛽0,𝛽𝛽1), they can be used to make a prediction for any given new data point, x (i.e.   𝑦𝑦� = �̂�𝛽0 + �̂�𝛽1𝑥𝑥 ). For this 

reason, some traditional statistical algorithms are commonly found in the machine learning toolbox to be 

used for prediction rather than estimation.  

 

With different purposes, it is not surprising that traditional statistical and ML algorithms have different 

areas of application where one performs better than the other. For example, city planners who are 

interested in understanding what factors cause congestion in certain districts may employ statistical 

methods that have a long history of successfully solving such problems. On the other hand, companies 

providing real-time traffic service for commuters would be more interested in predicting whether a certain 

route that the commuter is taking will be congested or not and this is the area of prediction where ML is 

specialised in. In applications where accurate predictions at the level of individuals are infeasible, ML 

methods may also see limited applicability. However, statistical methods can still deliver insight. For 

example, a statistical model such as logistic regression allows the assignment of significance to individual 

predictors when modeling the occurrence of a disease, even if such an ML or classical statistical model 

cannot accurately predict which individuals will get the disease. 

 

The popularity of ML in social media services, online shopping recommendation or search engine 

refinement is due to their ability to make predictions for individual cases. In the official statistics field, the 

use of ML is becoming increasingly popular in areas where such individual prediction tasks are needed. It 

can be in areas where these tasks used to be solved by traditional statistical algorithms (e.g. predicting 

whether a certain record needs editing) or by manual work (e.g. predicting to which category an open-

ended response or satellite imagery pixel should be classified). This popularity may be coming about due to 

the acceptance of machine learners to use more complex models than traditional statisticians, which can 

lead to higher predictive accuracy. 

 

ML is a relatively new tool in the official statistics field. While there is an increasing body of work on 

methodological aspects of ML, there has been less done on quality aspects. Commonly used and accepted 

quality concepts may require re-evaluation through ML perspectives. For example, the UN National Quality 

Assurance Framework writes “the accuracy of statistical information reflects the degree to which the 

information correctly describes the phenomena it was designed to measure, namely, the degree of 

closeness of estimates to true values”. While this accuracy is often considered as how accurate statistical 
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estimates that describes characteristics of the underlying population (e.g. unemployment rate estimate 

based on Labour Force Survey), “accuracy” for ML can also mean how accurate the predictions are for 

individual cases in an intermediate processing task as part of the entire production process in common 

application areas within statistical organisations. Also, unlike manual classification done by humans, ML 

methods are scalable but may require initial development and investment which affects cost-effectiveness 

and timeliness of the end-product in a different way compared to existing methods. The specificity of ML 

methods requires new quality dimensions (e.g. explanability and reproducibility) which are not considered 

in existing quality frameworks. 

 

The goal of this document is to propose a Quality Framework for Statistical Algorithms (QF4SA) to provide 

guidance on the choice of algorithms (including traditional algorithms) for the production process. 

Throughout this document we define an algorithm as a process or set of rules to be followed in 

calculations, derived from an assumed model and a predetermined set of optimisation rules, for estimation 

or prediction. Statistical algorithms are those used within a statistical context. We purposely use the 

terminology statistical algorithm as it covers both traditional and modern methods typically used by official 

statisticians.  

 

Under the QF4SA, we propose five quality dimensions; explainabiity, accuracy, reproducibility, timeliness 

and cost effectiveness. Most of these dimensions are considered in existing quality frameworks for 

statistical outputs but in the QF4SA they apply specifically to statistical algorithms. The definitions of these 

dimensions are given below: 

 

Explainability 

Explainability is defined as the ability to understand the logic underpinning the algorithm used in prediction 

or analysis and the resulting outputs as well. Explainability will be greatly assisted by depicting the 

relationship between the input and output variables, and the provision of necessary information on the 

methodology underpinning the algorithm. 

 

Accuracy 

Across several internationally accepted frameworks, slightly different definitions of accuracy are given.  The 

definition proposed for QF4SA can be summarized as follows: 

The accuracy of statistical information refers to the degree to which it correctly describes the 

phenomena it was designed to measure, i.e. it is the closeness of computations or estimates to the 

exact or true values that the statistics were intended to measure. 
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Reproducibility 

At the basic level, reproducibility is defined as the ability to replicate results using the same data and 

algorithm originally used. This is known as methods reproducibility. At a higher level, it is defined as the 

production of corroborating results from new studies using the same experimental methods (results 

reproducibility), or similar results using different designs of the studies, experimental methods or analytical 

choices (inferential reproducibility). 

 

Timeliness 

Timeliness is defined as the time involved in producing a result from conceptualization, algorithm building, 

processing and production. Distinction should be made between timeliness in development and 

production. The former generally takes longer than the latter. 

 

Cost effectiveness 

Cost effectiveness is defined as the degree to which the results are effective in relation to its cost. It is a 

form of economic analysis that compares the relative merits of different algorithms. For this purpose, cost 

effectiveness can be defined as the accuracy (measured by the Mean Squared Error (MSE) or F1 scores for 

example) per unit cost. Note that the total cost of doing the job (scalability included), including fixed costs 

such as infrastructure, staff training etc. and ongoing costs such as production costs should be taken into 

account. 

 

One could argue that there are other more appropriate definitions for these dimensions, but the purpose 

of the proposed quality framework is to open a dialogue on what official statisticians should reflect on 

when comparing statistical algorithms, be they traditional or modern. In what follows, we elaborate on 

each of the dimensions and propose aspects of each to consider when comparing algorithms. 

2.0 Explainability 

2.1 Description of explainability 

In the QF4SA, explainability is defined as the degree to which a human can understand how an output is 

produced from a statistical or a machine learning (ML) algorithm using its input features. Throughout the 

document we use the term feature to represent individual independent variables that are inputs and is 

synonymous with explanatory variable, independent variable or regressor in more traditional contexts.  

Note that explainability concerns the relationship between input features and the predicted output rather 

than the “mechanical” understanding of the algorithm. For example, “finding a hyperplane separating data 
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points by class” is a mechanical understanding of a support vector machine (SVM) while an explanation 

such as “the higher the value of feature X, the more likely the output is classified as category y provides an 

understanding how input features are related1 to the output. Note that a prediction can be explainable but 

might not be interpretable even with domain knowledge, i.e. in the above example, lack of a scientific 

explanation as to why X produces output y. An ML algorithm is explainable as long as subject matter 

experts and other users can assess the logic of the way the algorithm makes a decision (see “Importance of 

explainability” below). For example, a type of chemical whose effect on the output is not well known but 

turns out to be an important factor. Explainability can therefore be pictured as a concept between the 

mechanical understanding and interpretability. 

 

Predicted values, or predictions, from statistical models are often considered more explainable than those 

from ML models because statistical models tend to be more explicit in liking inputs to outputs. For 

example, regression coefficients explain the direction and strength of the relationship between the feature 

and the output. However, this is not always the case. The explainability of a regression model becomes 

unwieldy in a generalized linear mixed model with many (potentially transformed) features, their 

interactions, their effect on regression coefficients and a non-identity link function. On the other hand, the 

explainability of a prediction from a deep decision tree (an ML algorithm), on the other hand, is 

straightforward. 

 

While predictions from a single decision tree are explainable (e.g. the prediction of instance i is  y�i = yi   

because feature 𝑋𝑋1𝑖𝑖 > 𝑥𝑥1 and feature 𝑋𝑋2𝑖𝑖 > 𝑥𝑥2), predictions from a random forest—combining predictions 

from hundreds of decision trees—are less explainable because a user cannot discern how input features 

lead to the output. Given enough data, more complex ML algorithms, such as (deep) neural networks, may 

outperform simpler algorithms in terms of prediction error because they can better learn nonlinear 

relationships and interactions. Combining multiple algorithms through bagging, boosting or stacking may 

further reduce prediction error and prevent overfitting. However, improved algorithm performance 

through increased complexity comes at the expense of explainability because as an algorithm becomes 

increasingly complex, it is often more difficult to explain it. 

2.2 Importance of explainability 

Explainability is important to gain trust about ML algorithms from users. ML algorithms are often 

considered as a black-box. Understanding how an ML algorithm makes decisions can give more trust to 

 
1 Note that a relationship revealed in any model trained on observational data does not imply causation. For instance, 
increasing the value of a feature X through a subsidy or tax benefit may not be a successful policy-making strategy to 
promote a category y. 
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users as they can relate the behaviour of the ML algorithm with their prior knowledge and internal logic. 

We do note that explainability might be user-specific. For a statistical organisation using an ML, these users 

can include: statisticians who may not be familiar with ML methods and subject matter experts in the 

organisation; data providers in partner organisations; data users from the general public, academia and 

policy makers; as well as data scientists developing ML algorithms. 

 

Understanding how algorithms make certain predictions can shed light to users on hidden patterns within 

the data that humans cannot easily perceive. This could provide new insights about phenomena (for 

subject matter experts) and help improve performance of the algorithm itself (for ML developers). 

 

While a high prediction accuracy of a ML algorithm indicates that the algorithm performs well, an algorithm 

can make a correct decision for the wrong reasons. For instance, Szabo (2019) describes an example where 

an automatic system developed to predict a patient’s risk of pneumonia based on x-ray images turned out 

to have simply learned the type of x-ray machine. The reason was that doctors usually took x-rays with 

portable x-ray machines for patients in critical condition and in urgent need for diagnosis, whereas patients 

without serious conditions were sent to a radiology department where their x-ray would be taken with a 

different type of x-ray machine. If an algorithm is a black-box, the outputs could, at best, be of limited use 

to the user and at worst be misunderstood for critical decision making which, in some circumstances, 

impact human life.  Therefore by requiring some human intervention, explainability can serve as a 

safeguard for machines making correct decisions for the right reasons. 

 

Explainability draws great attention to developing fair, accountable, transparent and ethical (FATE) 

artificial intelligence. In application areas where decisions made by a machine have a direct and significant 

impact on the daily lives of people (e.g. medical diagnostics, autonomous driving, fraud detection, social 

credit, etc.), it is important to ensure that such decisions are made in a fair and ethical way. For example, if 

a machine learning model developed for credit approval with hundreds of features happens to make 

decisions based mostly on certain demographic variables, the algorithm is likely to be considered as 

“unethical”, hence should be corrected before deployment, regardless of how accurate the prediction of 

the algorithm is. ML algorithms are often considered as neutral and independent as they make decisions 

solely based on data and free of human bias. However, because of the very fact that they “learn from 

data”, accidental bias in data can be perpetuated by ML algorithms if careful checks and balances are not 

performed. With increasing awareness that human subjects should be provided with an “explanation of the 

decision reached [through automated processing]” (GDPR Recital 71 on Profiling), national statistics offices, 

as a public agency, should be aware of these issues around the use of ML. For example, could the output of 

a machine learning process using many features identify unique individuals in a population? 

https://gdpr-info.eu/recitals/no-71/
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2.3 Making predictions explainable 

Explainable ML, or eXplainable artificial intelligence (XAI), is a recent but very active field of research. A 

multitude of methods, each with its own benefits and caveats, has been proposed to make predictions 

from “black-box” algorithms more explainable. Note that these methods do not make the machine learning 

algorithms more explainable directly. Instead, they make predicted results more explainable which sheds 

lights on the behaviour of the algorithm, hence improving understanding of how the algorithm works. The 

objective of this subsection is not to provide technical or methodological details of those methods but to 

introduce briefly a few existing methods developed in the ML community as a starting point. Readers who 

are interested in further details are encouraged to refer to the resources listed in the references (e.g. 

Arrieta et al. 2020, Vilone and Longo 2020, Molnar 2019 and Bhatt et al. 2020). 

 

An important group of explainability methods show the importance of features, by visual plots, 

quantitative measures or surrogate models. One way to assess feature importance is to plot how the model 

prediction of an instance changes when the value of one feature is changed. For example, assume there are 

p features (X1,...,Xp) and one output variable (y). For each instance i, changing the value of X1i, while fixing 

the value of all other features, will create a line of predicted values that shows how the individual 

prediction yi changes with the value of feature X1. Combining all (or a sample of) instances together yields 

an individual conditional expectation (ICE) plot for feature X1. 

 

 
Figure 2.1. Example of Individual Conditional Expectation (ICE) Plot 

 (Source :Goldstein et. al., 2014) 

 

Partial dependence plots (PDP) averages over all instances to show the overall marginal effect of a feature 

on the model prediction. While ICE and PDP are intuitive and easy to implement, they assume the feature 

of interest, plotted on x-axis, is uncorrelated with other features, which might not be true in real situations. 

 

https://arxiv.org/pdf/1309.6392.pdf
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Another way to assess feature importance without retraining the model is to measure the increase in 

prediction error when a feature is permuted, i.e. shuffling its values to break up the relationship between 

the feature and the outcome. A surrogate model is an explainable model that approximates the 

relationship between the features and the outcomes predicted by a black-box model. The surrogate model 

provides an explanation for the prediction by the black-box model. Local interpretable model-agnostic 

explanations (LIME) are an implementation of a surrogate model which is aimed to explain a single 

prediction. New instances and their black-box predictions are generated around the instance of interest. An 

interpretable model is trained on the generated data, weighted by their distance in feature space to the 

instance of interest. For example, the figure below shows a complex relationship between the two 

dimensional feature space (x-axis and y-axis) and binary output class (red and blue). An instance of interest 

is chosen (bold red cross), new instances are drawn from the feature space and their output values are 

predicted (crosses and points) and an explainable model (dashed line) is fit to the generated data, weighted 

by their distance from the instance of interest (size of crosses and points).  

 

 
Figure 2.1. Example of Local interpretable model-agnostic explanation (LIME) 

(Source: Ribeiro et. al., 2016) 

 

The Shapley value is a measure for the contribution of a single feature value to the prediction of a single 

instance. It is calculated by comparing the predictions between different values of the feature, averaged 

over all (or a sample of) possible combinations of values for the other features. The contributions sum to 

the difference between the individual and average prediction. 

 

Another group of explainability methods find2 data points in feature space that are aimed to serve as: 

● Counterfactual example: a data point that is as close in feature space as possible to the instance of 

interest but with a different predefined outcome. For example, assume that a description of a 

 
2 In this note, we focus on describing what the data points of interest are but omit how to find those data points 
through optimization of loss functions. 

https://arxiv.org/abs/1602.04938
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work-related injury is “I cut my finger while chopping something on a wood board” was given and 

the occupation of the person is classified as “a cook”. However, if the description had been “I cut 

my finger while carving something on a wood board”, the outcome would have been “a sculptor”. 

The change in feature space between the predicted outcome and the counterfactual (e.g. 

“chopping” for “cook” vs. “carving” for “sculptor”) is a counterfactual explanation. 

● Adversarial example: an instance where one or more feature values have been slightly perturbed 

in a way that the right prediction turns into a wrong prediction (e.g. making an image classifier 

mislabel an image of a stop sign by adding a sticker to it). Although designed to mislead a trained 

image classifier, adversarial examples can be used to improve model security and robustness, and 

hence explainability.  

● Influential instance: a data point in the training set that affects considerably the performance of 

the algorithm when deleted. For some algorithms, influence functions can approximate an 

instance’s influence without the need to retrain the model. 

 

Traditional statistical algorithms employ intuitive formulations which produce results that are innately 

explainable. Machine learning algorithms may produce a higher predictive accuracy than these traditional 

methods but due to their complexity, they are often considered as incomprehensible black-boxes which 

can hamper the use of ML in the statistical organizations. Therefore, as machine learning becomes more 

common in the production of official statistics, the QF4SA is recommending that if complex algorithms are 

used in any phase of the production of outputs, the official statisticians putting these algorithms in place 

must not only focus on minimizing the prediction error but also make a strong effort to achieve 

explainability by adopting some of the methods outlined above. 

3.0 Accuracy 

In the context of machine learning, we note that there may be some confusion when discussing accuracy: 

the term accuracy is used for a specific performance indicator in classification and machine learning 

(namely the fraction of correctly classified data points). However, in this section we will present a much 

wider concept of accuracy and list several indicators to calculate it accordingly with a special focus on 

machine learning. 

 

We also note that depending on the variables involved, measures of accuracy could take on different forms. 

For continuous variables, the Mean Squared Error (MSE) may be used to measure accuracy, with the bias 

squared component to quantify the effects of measurement errors. Other measures include mean absolute 

deviation, mean absolute relative deviation and distributional measures such as Kullback-Leibler deviation. 
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For categorical variables, accuracy may be measured by the misclassification rate or other measures of 

agreement between predicted and observed classes  (e.g. informedness, markedness, F1 Score, Matthews’ 

Correlation Coefficient or  Cohen’s Kappa), a deviance (-2*log likelihood), or area under the ROC curve 

(AUC). 

3.1 Accuracy in official statistics 

Accuracy has many attributes, and in practical terms there is no single aggregate or overall measure of it. 

Of necessity, these attributes are typically measured or described in terms of the error, or the potential 

significance of error, introduced through individual sources of error. 

 

It can be stated that it relates to the concept of measuring the distance between the estimate (output) and 

the true value in an appropriate way: the closer the estimate is to its true value, the more accurate the 

estimate is. We note that the deviation may be structural (bias) or random (variance). 

 

For every framework, qualifying comments are common. For instance, ”Any factors which could impact on 

the validity of the information for users should be described in quality statements” (Australia) or “It should 

be assessed in terms of the major sources of errors that potentially cause inaccuracy. The accuracy of 

statistical estimates is usually quantified by the evaluation of different sources of error, where the 

magnitude of an error represents the degree of difference between the estimate and the true value” 

(Canada).  

 

These comments relate to the concept of measuring the distance between the estimate and the true value 

of the target parameter and refer to the closeness between the values provided and the (unknown) true 

values. Such difference is called the error of the estimate and error is thus a technical term to represent the 

degree of lack of accuracy.  

3.2 Importance of accuracy 

The mandate of many National Statistical Offices includes the development, production, and dissemination 

of statistics that can be considered as a reliable portrayal of reality. To ensure that these statistics are of 

high quality, most National Statistical Offices have developed quality frameworks which cover the statistical 

outputs, the processes by which they are produced and the organizational environment. One of the most 

important components of every quality framework is accuracy, which is related to how well the data 

portray reality and has clear implications for how useful and meaningful the data will be for interpretation 

or further analysis. The concept of accuracy is defined across several frameworks in similar ways; the 

common fundamental notion is the closeness of the estimate to the true value. 
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Many measures of accuracy are available, each of them tailored to the particular estimation method being 

used and the situation (e.g. the type of data, the type of target parameter, etc.). Hence measures of 

accuracy can change according to the process and the target of the estimator. This target may refer directly 

to: (G1) the data elements or (G2) aspects about the distribution, as in the case of imputation. In addition,a 

common objective of statistical surveys is to estimate a set of parameters of the target finite population. 

Therefore, within a quality framework, (G3) the accuracy of the estimates of these parameters is generally 

also considered a key measure of quality. In all of these cases, the measure is to provide quantification of 

the closeness of the estimate to the true value.  

 

It is important to underline that the existing literature about the performance of an algorithm reflects the 

fact that to evaluate an estimator it is important to consider two different aspects (e. g., Hand 2012): 

a) In choosing the estimator for the job, the choice of predictor variables, the estimation of 

parameters, the exploration of transformations and so on. In this view, when choosing among 

different estimators a performance comparison is necessary in order to choose the most efficient 

one for the job.  

b) After an estimator has been chosen, an assessment of how well the estimator can predict the true 

values of new data.  

 

In official statistics, it is necessary to add an additional aspect to point (b) above,  

c) When the final estimate is released, an estimate of the uncertainty of it is required. 

 

Thus, the question naturally arises about which method should be adopted for a particular problem. The 

answer, of course, depends on what is important for the problem; different estimation methods have 

different properties, so a choice should be made by matching these to the objective. 

3.3 Accuracy of supervised machine learning for classification and regression 

As defined before, accuracy is meant to measure the closeness of an estimate to the true value. Hence, it 

depends on the estimation method under study. Therefore, before going into detail on measures of 

accuracy, we first set the context of how machine learning algorithms are used. 

3.3.1 Training, validating, and testing principle 

To set the context, it is important to describe, in general terms, how the process of estimation and 

prediction is performed within a supervised machine learning approach. Suppose that there is a set, S, of 

labelled data 𝑆𝑆: {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁)} which belong to two spaces i.e. 𝑥𝑥𝑖𝑖 ∈ 𝑾𝑾 and 𝑦𝑦𝑖𝑖 ∈ 𝑸𝑸. That is, S is a set 
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of observations of given variables X and Y that take on values over the given spaces. In machine learning, 

the existence of a function linking the variables in the two sets is presumed, 

Y= f (X). 

A machine learning algorithm estimates the mapping function 𝑓𝑓 from the input to the output. The goal is to 

approximate the mapping function so well that, when there is new input data (X), it is possible to predict 

the value of the output variable (Y) for these data. Depending on the nature of the spaces (and hence the 

variables within), we differentiate the task as follows. If the space is continuous, that is, it consists of an 

infinite number of elements, then the task is called regression. On the other hand if the space is discrete, 

then the task is called classification. In less technical terms, if the output variable is quantitative/ numeric 

the learning task is called regression; if it is qualitative/categorical the learning task is called classification.  

 

Regardless of whether the task is regression or classification, machine learning algorithms will attempt to 

learn the relationship between X and Y based solely on the available data observed in S. As such, machine 

learning algorithms can be much more flexible than traditional modeling methods as they do not tend to 

pre-suppose particular relationships between X and Y. Of course, one always has to be aware of the 

problem of overfitting as algorithms become more flexible, i. e. of the possibility that a learnt model fits 

very well on the observed data (perhaps because it even interpolates the data) but generalizes poorly to 

yet unseen data. Using pre-specified models with controls to avoid unnecessary complexity, for example 

very high dimensional polynomial terms, can reduce the danger of overfitting. Machine learning, however, 

is known to be more flexible in the sense that it often does not have such a restriction. Usually, the class of 

possible models is much larger than only polynomials which are susceptible to overfitting to the observed 

data. Regularization, stopping rules, and the evaluation of the learnt model on test data sets which have 

not been used during the learning process are schemes to deal with this potential problem and help to 

improve the generalizability of estimators or predictors. Thus, a machine learning model should be learnt in 

the following way: the set of available data is split randomly into several (ideally independent) subsets, S ≡

A ∪ V ∪ T. For every set, the data in S are split accordingly, i. e. some (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) belong (not necessarily only) 

to A, some to V, some to T (see Figure 4.1). Note that Figure 4.1 is for illustrative purposes and is not 

suggesting an optimal number of validation or testing sets nor a ratio between the two. 

- The first set 𝐴𝐴 is for training the model (blue box);  

- The second set (or sets) 𝑉𝑉 (orange boxes) are used to find the best model parameters (e. g., the k in 

a k-nearest-neighbour approach, or the cost parameter (C) in a support vector machine approach);  

- The third set (or sets) 𝑇𝑇  (green boxes) are used to simulate what will happen when we apply the 

finally learnt model to new, yet unseen data. 

The random attribution of units to A, V and T is important to avoid concept drift as explained in Efron 

(2020). The final estimate 𝑓𝑓 of the function 𝑓𝑓  is always obtained on the training set 𝐴𝐴  (in combination with 
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validation set(s) or not) and assessed on the test set(s). Having more than one orange and more than one 

green subset allows one to not only get point estimates for the accuracy measures we want, but also an 

estimate of the variance of these. 

 

 
Figure 4.1: Training, Validation and Test sets 

 

The set up described is Figure 4.1 is the best way to split the set S, but for various reasons practitioners may 

chose other ways. Often, when there are not multiple validation sets (in orange) bootstrapping or cross-

validation on this single validation set is used to simulate the ideal situation where there are multiple 

validation sets. At times, due to lack of data, there is no validation set. In this situation, if optimal values for 

the parameters have to be found, this can be done via cross-validation or bootstrapping within the training 

data. 

 

The simplest and most common version is to learn some models based on one training set (perhaps with 

cross-validation on it to specify some parameters) and to test it on only one test set (or do bootstrapping 

on this to approximate the situation above).  By re-partitioning S into A and T multiple times, we have the 

opportunity to train and test the different algorithms or different parameters of the algorithms on multiple 

data sets, thus giving us their performance in choosing the most efficient algorithm/parameters. 

3.3.2 General approach for assessment of accuracy 

Following Hastie et al. (2009), we will show some details on this topic. Once the estimation of the function, 

𝑓𝑓, is obtained on the training sample A, a loss function is usually considered in order to calculate several 

types of errors of predicting with regard to observed values. Typical examples of loss functions for when 

the variable Y is numeric include: 

𝐿𝐿 �𝑌𝑌,𝑓𝑓(𝑋𝑋)� = (𝑌𝑌 − 𝑓𝑓(𝑋𝑋))2 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠) 

𝐿𝐿 �𝑌𝑌,𝑓𝑓(𝑋𝑋)� = �𝑌𝑌 − 𝑓𝑓(𝑋𝑋)�  ( 𝑠𝑠𝑎𝑎𝑠𝑠𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠). 
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In the situation of classification, when the variable Y is discrete, a simple loss function is the zero-one loss 

function given by 

𝐿𝐿 �𝑌𝑌, 𝑓𝑓(𝑋𝑋)� = 1(𝑌𝑌 ≠ 𝑓𝑓(𝑋𝑋))  . 

The assessment of an ML approach goes through the evaluation of a loss function that indicates the ability 

of the given algorithm to perform as well as possible in predicting the output given new data, as follows: 

𝐸𝐸𝑠𝑠𝑠𝑠𝐴𝐴 = 𝐸𝐸� 𝐿𝐿 �𝑌𝑌,𝑓𝑓(𝑋𝑋)�� 𝐴𝐴 ] 
 

where (X,Y) is a data point drawn from the joint distribution of (X,Y). Note that this error is conditional on 

the training set, A. This error is often estimated by 

𝐸𝐸𝑠𝑠𝑠𝑠�𝐴𝐴 =
1
𝑛𝑛
�𝐿𝐿 �𝑦𝑦𝑖𝑖 ,𝑓𝑓(𝑥𝑥𝑖𝑖)�
𝑛𝑛𝑖𝑖

𝑖𝑖=1

 

 

where (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) are points in the test set T of size n. If we average over all possible training sets, A, we obtain 

the expected error 

𝐸𝐸𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑨𝑨⊂𝑺𝑺𝐸𝐸� 𝐿𝐿 �𝑌𝑌,𝑓𝑓(𝑋𝑋)�� 𝐴𝐴]. 

The choice of which error to calculate depends on the situation at hand. If one is interested in the general 

performance of a machine learning algorithm, it is necessary to estimate Err which gives some protection 

from a poorly constructed training set. Furthermore, Err offers an impression about the robustness of an 

approach when the input data slightly varies. Fortunately, cross validation seems to estimate well Err 

(Hastie et al., 2009). 

 

However, when a particular machine learning model (a predictor, an estimator) has already been learnt, it 

has been learnt based on a concrete training data set A, so ErrA has to be calculated in order to get an 

impression about the future performance of this particular machine learning algorithm. 

 

3.3.3 Variance 

One common point of criticism of machine learning concerns the question of how to measure the 

uncertainty of the outputs. Besides the closeness of computations or estimates to the exact or true values 

which can, for example, be expressed by the bias, statisticians also consider the variance of an estimator, 

which can be used to calculate confidence intervals, or the uncertainty of predictions, which can be used to 

calculate prediction intervals. In parametric model-based statistics, formulae are usually available for these 

quantities. The estimated variances of some traditional estimators can be written down in closed formulae; 

if logistic regression is used, confidence intervals for the parameters and prediction intervals for the 
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predictions themselves are available. As there is currently a lack of mathematical-statistical theory for some 

machine learning algorithms, results like these cannot, at this time, be produced for those approaches 

without making additional assumptions. We note that assumptions are also required in traditional 

methods. 

 

In the context of both machine learning and traditional statistics, resampling methods like the jackknife 

(Quenouille 1956), cross-validation (Stone 1974), and the bootstrap (Efron 1979) have been developed and 

can be used to quantify the uncertainty on the three levels (G1)–(G3) mentioned above. Wolter (2007) 

presents an introduction with a focus on the context of survey sampling, while some studies in the context 

of classification and regression are given by Kim (2009) and Borra and Di Ciaccio (2010), respectively. Of 

course, the suitability of using these resampling methods for the algorithm and data at hand has to be 

demonstrated before being used. This is emphasized here because there are situations where, for example, 

the empirical bootstrap does not deliver suitable estimates (e. g., Bickel and Freedman 1981). However, 

their examples of bootstrap failures are unlikely to occur in official statistics. We next present some details 

on how cross validation and bootstrap samples can be used to evaluate statistical algorithms. 

 

K-fold cross validation 

 

K-fold cross validation uses part (or a fold) of the data to train the model and another fold to test (or 

validate) it. It is done by splitting the data randomly into K roughly equal folds. The model is trained on K-1 

of these folds and then tested (or validated) on the k-th fold (the one not used for training) and the 

prediction error is calculated. This is repeated for k=1, …, K and the K prediction errors obtained are 

averaged. More formally: 

- Let 𝑓𝑓−𝑘𝑘(𝑋𝑋) be the prediction of Y based on the model obtained when the k-th fold is omitted. 

- The estimated conditional training error based using the k-th fold as test data is then 

𝐸𝐸𝑠𝑠𝑠𝑠�𝐴𝐴
−𝑘𝑘 =

1
𝑁𝑁𝑘𝑘

� 𝐿𝐿�𝑦𝑦𝑖𝑖 ,𝑓𝑓−𝑘𝑘(𝑥𝑥𝑖𝑖)�
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)𝜖𝜖𝐹𝐹𝑘𝑘

 

 
where Fk is the set of Nk units  in the k-th fold. 

- Repeat for k=1, …, K. 

- The estimate of the expected error is then 

𝐸𝐸𝑠𝑠𝑠𝑠� 𝐶𝐶𝐶𝐶 =
1
𝐾𝐾
�𝐸𝐸𝑠𝑠𝑠𝑠�𝐴𝐴

−𝑘𝑘
𝐾𝐾

𝑘𝑘=1

. 

 

Typical values for K are, according to the literature, 5 and 10.  
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As mentioned in Hastie et al. (2009, pg. 249), evaluating the variability of the cross validation error 

estimates is important. This can be done by calculating 

𝑉𝑉𝑠𝑠𝑠𝑠� 𝐶𝐶𝐶𝐶(𝐸𝐸𝑠𝑠𝑠𝑠� 𝐶𝐶𝐶𝐶) =
1

𝐾𝐾 − 1
��𝐸𝐸𝑠𝑠𝑠𝑠�𝐴𝐴

−𝑘𝑘 − 𝐸𝐸𝑠𝑠𝑠𝑠� 𝐶𝐶𝐶𝐶�
2

𝐾𝐾

𝑘𝑘=1

 

 

as an estimate of the variance of the expected error rate, Err, but note that there does not exist an 

unbiased estimator for the variance of the cross-validation estimator (Bengio and Grandvalet 2004). 

 

Note that there are also the predictions, 𝑓𝑓−𝑘𝑘(𝑥𝑥𝑖𝑖), for all of the xi, so it is possible to calculate formally an 

estimate of the variance of prediction, when Y is continuous, 

𝑉𝑉𝑠𝑠𝑠𝑠� 𝐶𝐶𝐶𝐶(𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠) =
1

𝑁𝑁 − 1
� � �𝑦𝑦𝑖𝑖 − 𝑓𝑓−𝑘𝑘(𝑥𝑥𝑖𝑖)�

2

(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)∈𝐹𝐹𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

 

where N is the total size of the set S. That is 𝑁𝑁 = ∑ 𝑁𝑁𝑘𝑘𝑘𝑘 . If the folds are of equal size, that is Nk=N/K, then 

𝑉𝑉𝑠𝑠𝑠𝑠� 𝐶𝐶𝐶𝐶(𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠) is equivalent 𝐸𝐸𝑠𝑠𝑠𝑠� 𝐶𝐶𝐶𝐶 except for a factor of N versus (N-1). One could also look at the residuals, 

�𝑦𝑦𝑖𝑖 − 𝑓𝑓−𝑘𝑘(𝑥𝑥𝑖𝑖)�, to come up with something like empirical 95% prediction intervals, but again there is the 

limitation that the probability distribution of the cross-validation estimator is not known exactly. A critical 

discussion on cross-validation is given by Vanwinckelen and Blockeel (2014). 

 

Bootstrap 

 

For the bootstrap, we draw a simple random sample of N units with replacement from the original training 

set, 

𝐴𝐴𝑏𝑏 = {(𝑥𝑥1∗,𝑦𝑦1∗), … , (𝑥𝑥𝑁𝑁∗ ,𝑦𝑦𝑁𝑁∗ )}. 

Let 𝑇𝑇𝑏𝑏 be the set of units which are not selected in the b-th bootstrap sample and let 𝑓𝑓𝑏𝑏(𝑥𝑥) be the model 

obtained from the b-th bootstrap training sample. (If bootstrapping is used at the validation step, use 𝑉𝑉𝑏𝑏 

instead of 𝑇𝑇𝑏𝑏 as notation to avoid confusion). Use 𝑇𝑇𝑏𝑏 to test the model and calculate the estimate of the 

error as follows 

𝐸𝐸𝑠𝑠𝑠𝑠� 𝑇𝑇𝑏𝑏
𝑏𝑏 =

1
𝑁𝑁𝑏𝑏

� 𝐿𝐿�𝑦𝑦𝑖𝑖, 𝑓𝑓𝑏𝑏(𝑥𝑥𝑖𝑖)�
(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)𝜖𝜖𝑇𝑇𝑏𝑏

, 

where 𝑁𝑁𝑏𝑏 is the number of units in 𝑇𝑇𝑏𝑏. This is repeated B times (say 100 or more) and the estimated 

expected error is then 

𝐸𝐸𝑠𝑠𝑠𝑠� 𝐵𝐵𝐵𝐵 =
1
𝐵𝐵
�𝐸𝐸𝑠𝑠𝑠𝑠� 𝑇𝑇𝑏𝑏

𝑏𝑏
𝐵𝐵

𝑏𝑏=1

. 

One can also calculate the following quantities 
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𝑉𝑉𝑠𝑠𝑠𝑠� 𝐵𝐵𝐵𝐵�𝐸𝐸𝑠𝑠𝑠𝑠� 𝐵𝐵𝐵𝐵� =
1

𝐵𝐵 − 1
��𝐸𝐸𝑠𝑠𝑠𝑠� 𝑇𝑇𝑏𝑏

𝑏𝑏 − 𝐸𝐸𝑠𝑠𝑠𝑠� 𝐵𝐵𝐵𝐵�
2

𝐵𝐵

𝑏𝑏=1

 

 

𝑉𝑉𝑠𝑠𝑠𝑠� 𝐵𝐵𝐵𝐵(𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠) =
1

𝑁𝑁∗ − 1
� � �𝑦𝑦𝑖𝑖 − 𝑓𝑓−𝑘𝑘(𝑥𝑥𝑖𝑖)�

2

(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)∈𝑇𝑇𝑏𝑏

𝐵𝐵

𝑏𝑏=1

 

 
where 𝑁𝑁∗ = ∑ 𝑁𝑁𝑏𝑏𝐵𝐵

𝑏𝑏=1 . In addition, prediction intervals can be calculated. Note that there are several 

situations where this “standard version” of the bootstrap is not suitable for estimating the variance of a 

quantity, for example in time series. Other versions have been developed over the years (see, e. g., Wolter 

(2007), p. 194, for some references). The proposed variance estimators borrow heavily from traditional 

statistical methods and the theoretical properties of them must be explored. Therefore, we caution users 

on their use until their properties are fully understood. 

 

Resampling techniques are widely used to estimate variances in several situations. Many implementations 

(for example in R or Python) already provide them as standard procedures. Nevertheless, these techniques, 

which are surely necessary when using machine learning, also have some disadvantages and pitfalls. It is 

important to be aware of them. For example, it is highly recommended to carefully check which version of 

the bootstrap under which assumptions is appropriate for the individual problem at hand in official 

statistics. Also be careful with inference (i. e. with statistics beyond exploration and description) using 

“confidence intervals” or “statistical tests” based on cross-validation. 

3.4 Common measures for the evaluation of statistical algorithms or their results in ML 

3.4.1 When estimating the target parameter (G3) 

A conceptual framework for accuracy is the total survey error (TSE) which describes, ideally, the 

accumulation of all errors that may arise in the design, collection, processing, and analysis of survey data 

(Platek and Särndal 2001, Biemer 2010; Groves and Lyberg 2010). Commonly, the error components for a 

statistical process are listed as follows. 

- Sampling error: That part of the difference between a population value and an estimate thereof, 

derived from a random sample, due to the fact that only a subset of the population has been 

enumerated (Eurostat). 

- Non-sampling error: An error in survey estimates that cannot be attributed to sampling 

fluctuations. Examples of non-sampling error include coverage error, measurement error, 

nonresponse error, processing error and model assumption errors.  

Thus, the total survey error accumulates all errors, which may arise in the sample design, data collection, 

processing and analysis of survey data, and it comprises both sampling and non sampling errors. 
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Technically, there are a number of measures that may be used to indicate accuracy through the definition 

of the proper loss function. To quantify the TSE for the estimate of a (usually continuous) population target 

parameter, the most common metric used is the MSE (which is the square root of the sum of bias squared 

and the variance). 

3.4.2 When the focus is on distributional accuracy (G2) 

Distributional accuracy is an important aspect to consider when using statistical algorithms to impute for 

missing values. In addition to predicting the true unknown missing value, relationships between the 

variables, or distributional accuracy, must be considered. At least in higher dimensions, distributional 

accuracy cannot be measured easily by only one number. In the univariate situation there are, however, 

well-known tests (like the Kolmogorov Smirnoff test) to check, whether two distributions are significantly 

different from each other. In the multivariate case, interactions of the variables have to be considered. It 

might be necessary to calculate correlations between the dimensions, but also to calculate extreme values, 

moments and quantiles separately per dimension and to recombine them in a specified sense. If all this 

occurs within an imputation step, the number of broken plausibility rules for imputed values, (if possible: 

the impact on the downstream task), and the accuracy (ideally also the variance) of the estimation of the 

target parameters which are eventually to estimate are further important figures. When measuring 

distribution accuracy, the Jensen-Shannon metric appears to be an appropriate metric as outlined in 

Prasath et al. (2019), because of its versatility to handle multivariate distributions with continuous and 

categorical variables. 

3.4.3 When the focus is on cellwise predictive accuracy (G1) 

Referring to the pilot studies undertaken within the UNECE HLG-MOS machine learning project and the 

literature (e. g., Japkowicz and Shah 2011, Pepe 2003, Stothard 2020, Hand 2012), measures commonly 

used to assess the success of machine learning algorithms are: 

● In the case of regression, root mean squared error (absolute or relative), mean error, mean 

absolute or relative error, R² or the standard error of regression; 

● In the case of classification, predictive accuracy, recall, precision and F1 score per class and/or on 

macro levels, G measure, Matthews’ correlation coefficient and awareness of the consequences of 

the different misclassifications (see fair, accountable, transparent and ethical (FATE) artificial 

intelligence). 

The references mentioned above contain many more measures and discussion about them. A critical point 

in case of classification is for instance, how sensitive measures are to class imbalances (see, e. g., Luque et 

al 2019) or whether they need a pre-specified threshold in the decision function. In the latter case, areas 

under curves are used to assess classifiers, for example the area under the receiver operating curve and the 
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area under the precision recall curve (see Hand, 2012 for more discussion). Note that when these measures 

are estimated in a concrete task in order to evaluate how well the learnt predictor works, these numbers 

are only valid for tasks in the same context and based on new data from the same distribution (or the same 

data generating process) as the training and test data used for learning and assessing the predictor. This 

implies that the accuracy of an ML model must be continuously monitored, and underlies the importance 

of having representative training and test data of the population being imputed for. 

4.0 Reproducibility 

4.1 Dimensions of reproducibility 

According to a subcommittee of the U.S. National Science Foundation (Stodden, Steiler and Ma, 2018) on 

replicability in science, “reproducibility refers to the ability of a researcher to duplicate the results of a prior 

study using the same materials as were used by the original investigator. That is, a second researcher might 

use the same raw data to build the same analysis files and implement the same statistical analysis in an 

attempt to yield the same results…. Reproducibility is a minimum necessary condition for a finding to be 

believable and informative.” 

 

It is important to recognise the three dimensions of reproducibility, namely: methods reproducibility, 

results reproducibility, and inferential reproducibility (Goodman et al., 2016). 

- Methods reproducibility is defined as the ability to implement, as exactly as possible, the 

experimental and computational procedures, with the same data and tools, to obtain the same 

results. This is the same as the minimum necessary condition described in the U.S. National Science 

Foundation subcommittee recommendation. 

- Results reproducibility is defined as the production of corroborating results in an independent 

study (i.e. with new data), having followed the same experimental methods. This has previously 

been described as replicability. 

- Inferential reproducibility is defined as the making of knowledge claims of similar strength from a 

study replication or reanalysis. This is not identical to results reproducibility, because not all 

investigators will draw the same conclusions from the same results, or they might make different 

analytical choices that lead to different inferences from the same data.  

 

For the QF4SA, recognising that it is not feasible for the official statistician to undertake new data 

collections to corroborate the initial findings, it is NOT proposed to adopt the Results reproducibility in 

official statistics. 
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In addition, consistent with the Fundamental Principles of Official Statistics, Methods reproducibility has 

been invariably embraced by National Statistical Offices and its adoption in the QF4SA when using 

statistical algorithms to produce official statistics is expected to receive overwhelming support. 

 

On Inferential reproducibility, as there are generally multiple algorithms that may be brought to bear on 

the data analysis, there would be multiple ways to reanalyse the data. The official statistician, when 

deciding to use a particular algorithm, with a decided set of assumptions, for the analysis, has to be 

reasonably satisfied that the results from the chosen analysis can be corroborated from the analyses using 

alternative but applicable algorithms and assumptions. This is particularly important for analytical 

inferences where general assumptions inherent in the algorithms have to be made about the data.  

 

What is the distinction between accuracy and reproducibility? Accuracy is about having large accuracy 

metrics e.g. small MSEs for continuous variables, or large F1 scores for categorical variables, given a 

dataset, associated with the algorithm. Inferential reproducibility occurs when the MSE, or F1 scores, of the 

difference between results obtained from the same data set, from different choices of study designs, 

experiments or analytical techniques, is not statistically significant. In other words, inferential 

reproducibility is an attribute to show whether we can get essentially the same result (within a margin of 

error, and using algorithms correctly), and not whether that result is good. 

 

An example to illustrate the difference between accuracy and reproducibility is as follows: 

 

Suppose response Y depends on predictor X1 but not X2. We observe Y and X2, and build a model to 

predict Y from X2. That model concludes (correctly) that X2 is irrelevant to predict Y.  In that case, we 

would have poor prediction accuracy (high MSE for predictions of Y).  As one will get the same 

inaccurate predictions on Y using the same model and assumptions, the analysis is Methods 

reproducible. Also, the result that X2 is irrelevant to predict Y is Inferential reproducible because 

different models used to model Y on X2 will show the same result, provided these models are 

thoughtfully and correctly applied.  For example, a bad choice of hyperparameter or other 

inappropriate modelling decision could lead a model to overfit and incorrectly infer a relation 

between Y and X2.   

 

In the above example, we have shown that reproducibility is an attribute to show whether we can get the 

same result (Methods reproducible) or corroborating result (Inferential reproducible), and not whether 

that result is good. 
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4.2 Importance of reproducibility for official statistics 

Reproducibility builds and enhances trust in official statistics. The third Fundamental Principle of the 

Fundamental Principle of Official Statistics, “Accountability and Transparency”, adopted by the United 

Nations Statistical Commission in 1994, stipulates that: 

 

“To facilitate a correct interpretation of the data, the statistical agencies are to present information 

according to scientific standards on the sources, methods and procedures of the statistics” 

 

An underlying rationale for reproducibility is well articulated by Professor Gleser. In 1996, when 

commenting on their seminal paper on Bootstrap Confidence Intervals published in Statistical Science by 

DiCicio and Efron (1996), Professor Gleser said the “First Law of Applied Statistics” is that “Two individuals 

using the same statistical method on the same data should arrive at the same conclusion”. 

 

In the academic world, to ensure the “First Law of Applied Statistics” is followed through, many journals 

have revised author guidelines to include data and code availability. For example, the prestigious journal, 

“Science”, commencing February 11, 2011, requires: 

 

“All data necessary to understand, assess, and extend the conclusions of the manuscript must be 

available to any reader of Science. All computer codes involved in the creation or analysis of data 

must also be available to any reader of Science. After publication, all reasonable requests for data 

and materials must be fulfilled. Any restrictions on the availability of data, codes, or materials, 

including fees and original data obtained from other sources (Materials Transfer Agreements),must 

be disclosed to the editors upon submission...” 

 

Trust is the currency of official statistics. Whilst there are many factors that contribute to the building of 

trust, an important one, as outlined also in the First Fundamental Principle, is impartiality which, in a large 

measure, can be demonstrated by transparency in the sources, methods and procedures in the compilation 

of official statistics. Such transparency will allow independent analysts or researchers to access the integrity 

of, or where possible, reproduce and verify, the published official statistics.  

4.3 Demonstrating reproducibility 

Those who develop statistical algorithms, e.g. methodologists, data scientists and analysts, to compile 

official statistics are encouraged to assess the Methods and Inferential reproducibility of their algorithms 

before adoption. Once the reproducibility dimensions of the algorithms has been confirmed, during the 
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development stage, they can be put into production, and no further re-assessment would be considered 

needed. 

 

Methods reproducibility refer to the provision of enough details about algorithms, assumptions and data so 

the same procedures could, in theory or in practice, be exactly repeated.  

 

Documenting Methods reproducibility thus requires, at minimum, the sharing of analytical data sets 

(original raw or processed data), relevant metadata, analytical code, and related software. Because of 

confidentiality reasons, National Statistical Offices are generally not at liberty to share identifiable raw data 

for independent analysis. It is therefore proposed that the replication of the analyses be carried out in-

house and by another individual, who should be at-arm-length from the original researcher to assess 

reproducibility. 

 

For Inferential reproducibility, the methodologist should test corroboration of the results from the chosen 

algorithm with a small set of applicable algorithms and different assumptions. While there are no hard and 

fast rules to determine what constitutes corroboration, judgement should be applied when examining the 

results which are “different” from those of the chosen algorithm and assumption. For example, are the 

differences statistically significant, i.e. not due to random fluctuations? If they are, can the methodologist 

explain why it is the case, e.g. due to an improvement in efficiency, and provide back-up of the explanation 

using statistical theory? 

 

Finally, it is also proposed that the outcomes of the Methods and Inferential reproducibility be documented 

for longevity and, where possible, publish these as part of the Quality Declaration statement normally 

released together with the official statistical output. 

 

Clearly, reproducibility of statistical algorithms is fundamental to uphold the trust of official statistical 

outputs. Whilst three types of reproducibility are recognised in this section, we propose NSOs adopt the 

Methods and Inferential Reproducibility to support their choice of statistical algorithms in producing NSO 

outputs. 
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5.0 Timeliness 

5.1 Timeliness for statistical algorithms 

Quality guidelines or frameworks by many NSOs (Statistics Canada, the Australian Bureau of Statistics, the 

Office for National Statistics and the OECD) define timeliness as the length of time between the reference 

period and the availability of information. The QF4SA is advocating the consideration of development and 

processing time to be considered as well as the normal timeliness measures. More broadly, the concept of 

timeliness should be expanded to cover the period of time between the need for data and the release of 

the information to meet that need. With the increased use of big data, the speed at which machine 

learning algorithms can be trained and run could lead to significant improvement in timeliness. This is 

particularly true for processes which are typically done manually such as coding. Coding applications can be 

developed quickly using machine learning, particularly if past manually coded data can be used as training 

data. In addition to being able to be set up fairly quickly, once developed, machine learning algorithms are 

capable of processing vast amounts of data in a short period of time. In comparison to manual processes, 

machine learning algorithms could lead to significant savings in processing time. 

 

5.2 Importance of timeliness 

Official Statistics are only useful when they are relevant which means that they need to be available in a 

timely fashion. Economic indicators of a downturn in the economy are not relevant if they are only 

available six months after the downturn has occurred. Many quality frameworks define timeliness as the 

length of time between the reference period and the availability of information. However, for the QF4SA 

we consider two additional dimensions of timeliness: 

- The length of time it takes to develop or put in place a process 

- The amount of time it takes to process data. 

These two dimensions are considered as we feel that machine learning can offer some advantages over 

commonly used methods which can lead to improvements in the commonly used definition of timeliness. 

5.3 Responsibility of ensuing timeliness 

Typically the development and/or choice of statistical algorithms, be they machine learning or other 

commonly used methods, would be done or decided upon collectively by methodologists, data scientists 

and/or analysts. Depending on the problem at hand, the work should also involve informatics specialists 

and subject matter experts. The considerations of timeliness are most likely evaluated during the 

development phase of a project. However, during redesigns or continuous improvement opportunities, this 

aspect of timeliness should be considered. 
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5.4Aspects to consider 

Clearly, measuring the time required to develop, set into place and use in production is straight forward. In 

the section, we list some aspects which need to be taken into account during the evaluation. 

- Data cleansing required 

It is highly likely that all potential methods will require similar data cleansing be performed. 

However, if for some reason certain methods require specialized preparation of input data, then 

this should be recorded. 

 

- Informatics Infrastructure 

If the method requires an informatics infrastructure which is not currently available, then the time 

required to set up such an environment should be considered. The time required to put in place 

such an environment should not be underestimated. 

 

- Preparation of training data 

Supervised machine learning algorithms require high quality training data and depending on the 

method , a large quantity of data is required. Existing data should be considered for training data if 

appropriate. Note that some traditional approaches also have a need for auxiliary data which can 

be time consuming to obtain. For instance non-machine learning coding algorithms typically need a 

data dictionary that is complete, accurate and up-to-date.  

 

- Evaluation of data quality 

Many well established methods have processes for evaluating data quality. For instance, a well 

developed theory for variance due to imputation exists. However, new approaches may not have 

well defined processes to estimate quality indicators and may rely on resampling type algorithms 

(for example, cross validation or bootstrap) to evaluate quality. Depending on the algorithm, these 

resampling methods could take significant amounts of time to compute. 

 

- Scalability of the approach 

As data sources continue to grow in size, the time required to process large datasets should be 

considered. Manual processes are not a viable choice when the number of records to process 

becomes large, so machine learning algorithms may be preferable. 
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6.0 Cost effectiveness 

6.1 Cost effectiveness for statistical algorithms 

Cost effectiveness can be defined as the degree to which results are effective in relation to the costs that 

have been expended to obtain them. Results in statistics are mainly measured in terms of accuracy: thus, it 

is natural to link cost effectiveness to the accuracy dimension and try to measure it under this perspective. 

In this section we will define cost effectiveness as the accuracy (measured by the MSE for continuous data 

and F1 score or similar metrics for categorical data) per unit cost.  

 

This is an operative definition that makes comparisons between different methodologies possible. In the 

case of machine learning, an organization may compare the accuracy of a machine learning algorithm with 

the accuracy of a traditional method for the same statistical process, expressing both approaches in terms 

of their unit costs. The assessment of accuracy in ML is usually based on the consideration of a loss 

function; in traditional methods uncertainty is expressed by the variance of an estimator, but resampling 

methods may be used as well (see section 3.4).The same comparison could be made, of course, between 

two or more machine learning algorithms if the objective were to choose the most cost effective one, all 

other aspects considered. However, there may be some practical issues to be considered with this method, 

especially related to which costs should be included in the analysis.  

 

Whenever a new method is introduced in a production process, an organization will have to face some 

initial expenses to implement it. Such costs may be broadly defined as fixed costs, as they usually represent 

costs that are to be paid to launch the infrastructure for the new method. Machine learning, which can be 

heavily dependent on the underlying Information Technology (IT) infrastructure, may pose some challenges 

in this regard. In fact, fixed costs for machine learning mainly include the IT-related costs for the acquisition 

of new software and hardware and the costs of training the organization’s staff. They are different from the 

other category of costs that can be identified, the ongoing costs, which derive from a regular effort to keep 

the whole system running and up to date. In the following table a list of the possible costs involving a 

machine learning project is reported. It may be useful to note that also traditional methods present fixed 

costs, which however have been invested by NSOs over many years, so it is usually the case that no 

additional fixed expenditure is required for them. 

 

Table 1. Potential additional fixed and ongoing costs for machine learning adoption 

Cost component Type Purpose 

IT infrastructure fixed Acquisition of necessary hardware and software 
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Cloud storage ongoing Acquisition of necessary on cloud storage space 

IT maintenance ongoing Maintenance of IT infrastructure 

Initial training of staff fixed Training of current staff on ML; may include hiring of new 

staff 

Staff formation ongoing Keeping staff up to date regarding new ML developments  

Data acquisition fixed / ongoing Acquisition and processing of new data sources 

Quality assurance ongoing Quality assurance and control 

 

The details of these components will be explained later in this section. For now it should be noted that 

machine learning methods, by themselves, are not necessarily more expensive than traditional methods. In 

some cases, as they generally rely on less theoretical assumptions than classical statistics, they could be 

even simpler to implement and could be applied to traditional datasets without much difficulty. . In such 

cases, where big data are not included in the process, ML methods may present little additional costs. The 

elements shown in the table can be considered as a starting point for the comparison of ML and traditional 

methods; such comparison can be made by a) analysing whether the running costs for ML methods are 

cheaper than traditional ones or b) computing the number of years to recoup the investment needed on 

the extra elements outlined in the table. 

6.2 Advantages of cost effectiveness 

The last decade has seen an explosion in data production, due to improvements in speed of computer 

processing and innovations in communication networks. Official statistics have therefore been forced to 

compete with an increasing pool of data producers, while often being limited by tight budget constraints. 

Statistical offices face the challenge to meet the required high-quality standards of official statistics with 

the resources that are made available to them. Cost effectiveness, indeed, is an aspect that has guided 

many statistical institutes in recent years: the European Statistics Code of Practice, for example, dedicates 

its principle n. 10 to cost effectiveness, stating that resources should be used effectively. Current statistical 

processes may be revised to achieve the same or better levels of accuracy using sources or methodologies 

that would allow the organizations to save some costs; new data sources may be explored to save costs in 

data collection procedures. Indeed, cost effectiveness is one of the reasons behind the shift by National 

Statistical Offices from a survey-centered data production to processes involving administrative and 

innovative sources of data. The introduction of machine learning can be seen as a further step in this 

evolution. 



 

27 
 

6.3 Organizational considerations 

Machine learning in official statistics is still a field under investigation, although it has shown promising 

results. However, organizations are different from each other regarding their available budget and their 

statistical production, so the convenience of introducing machine learning into the current production has 

to be looked at on a case-by-case basis. If an organization is new to machine learning algorithms and to big 

data sources in general, it would probably need to implement a suitable infrastructure from the start. 

Therefore, it will have to take into account the starting costs and evaluate them against its budget, against 

the cost of the current production and the expected accuracy improvement. The fixed costs may represent 

the main challenge in this case and may take a toll on the organization’s budget, but they also have to be 

compared to the future savings that machine learning would grant. As such, fixed costs could actually be 

considered as an investment that would allow greater savings in the future. Such savings may depend on 

the characteristics of the statistical production itself, as some processes may be more suitable for a 

migration towards machine learning than others. It is possible that an organization is involved in many 

projects that can easily – and beneficially –adopt a machine learning approach, while another organization 

may have too few of such projects, so in this case the initial investment would be harder to justify.  

6.4 The potential costs of machine learning 

As it can be seen from table 1, a big part of the costs linked to the adoption of machine learning are IT-

related and staff-related costs. In order to illustrate them it is convenient to introduce two of the main 

advantages of machine learning methods: scalability and automation.  

 

The former implies that a procedure may be applied with no or few modifications to a larger scale, for 

example to a bigger data source with a greater set of units or features. As noted earlier, machine learning 

methods per se do not necessarily require any additional effort in terms of computations or resources. 

However, when used in conjunction with big data, they can quickly become computationally intensive. 

Machine learning algorithms are often based on iterative methods and, of course, the better the hardware, 

the faster such iterations will be. An organization’s existing infrastructure may require some adjustments 

(CPUs, GPUs, storage space) before it can be employed for computational intensive operations or large data 

sets. Furthermore, IT costs should also include the resources needed for cloud storage and on-cloud 

computations, which are usually ongoing costs. In conclusion, when planning for the introduction of 

machine learning in a statistical process, an organization could require an IT infrastructure that is optimized 

for a level above its current needs to accommodate a potentially more intensive processing or bigger data 

sources. 
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Automation, on the other hand, lets an organization save human resources. As listed in the table, the cost 

of training staff should be included in the initial costs of the introduction of machine learning methods, as 

usually the staff of statistical institutes is trained on classical statistics and may need appropriate training 

for the use of machine learning. This cost has to be sustained whether the application of machine learning 

is planned for small datasets or large datasets. The underlying domain knowledge and statistical 

preparation of the staff, however, should ensure that such training will not be too extensive; consequently, 

the starting training costs may not be expensive. On the other hand, as the field of machine learning is 

subject to rapid innovation and its application in official statistics is still new, the need for continuous 

learning cannot be neglected. For this reason, the training of the staff also represents an ongoing cost.  

 

Once the fixed and the ongoing costs of training are considered, automation should make it possible to 

obtain savings in terms of staff needed to execute operations. This should let the organizations be able to 

free up human resources to be employed in other sectors of the statistical production cycle. In turn, the 

staff employed on machine learning procedures could be able to focus on aspects that are important for 

official statistics, like explainability and methods and inferential reproducibility of results. 

 

Lastly, the adoption of machine learning algorithms opens new possibilities for data collection and data 

sources. Acquisition of big data sources, from an IT point of view, presents the challenges that were 

illustrated before: expansion of storage space, both local and on cloud, improvement of hardware and so 

on. Additionally, acquisition costs must also need to be factored in, as big data sources are often held by 

private companies. Such costs may be either fixed or ongoing depending on the agreements with data 

providers. In such cases, of course, it should be advisable for an organization to try to obtain a test set of 

the data in order to assess its usefulness for the current production before committing to an agreement.It 

is also worth reiterating that some big data sources can be freely accessed, for example, through web 

scraping or open data portals. 

 

From the elements described above some tests can be formulated to include the various aspects of cost 

effectiveness into the assessment of accuracy. First of all, the accuracy per unit cost metric described in 

section 6.1 could be regarded as a “cost effectiveness test”, useful to investigate the costs linked to an 

improvement of accuracy deriving from the adoption of a new method. For this purpose, this test should 

only include the variable costs in its assessment, especially if used to compare a ML method to a traditional 

one, for which fixed costs probably have already been paid during the previous years. 

 

Another possible test focuses on the return of investment, which on the other hand is useful to assess the 

fixed costs and the period of time that is needed to recoup the initial investment in ML. Indeed, two or 
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more ML algorithms can be compared over a specific period of time (e.g. 5 years) to assess which one 

offers more savings and if such savings are enough to compensate for their introduction in the production 

process. 

 

After these tests have been applied, a ML algorithm should only be chosen if both tests are satisfied, that is 

if the algorithm is cost effective and the cumulative savings it guarantees are bigger than the Net Present 

Value of the investment in ML. 

 

It is possible, and it is usually the case, that the same ML/IT infrastructure is shared between multiple ML 

procedures. This should happen as a NSO becomes more confident in ML methodologies and increases its 

adoption of ML. In this case, when computing the metrics to evaluate the costs and savings of a ML 

implementation, the fixed costs should be apportioned between the relevant algorithms. 

6.5 Conclusions 

The previous illustration of the potential costs of a machine learning implementation should shed some 

light on the metric that was introduced at the beginning of the section, the accuracy per unit cost. When 

computing this measure it can be convenient to differentiate between specific elements of the potential 

expenses, depending on the needs and the current state of a statistical organization. In other words, there 

cannot be a unique use of the accuracy per unit cost metric, as it has to be considered in the context of 

each organization. For example, decomposing it into the different components of cost is useful to better 

assess the potential savings and accuracy improvements against the future ongoing costs. This would also 

help to get an estimate of the time that would be needed to recoup the initial investment. 

 

Finally, in the case that machine learning would allow an organization to improve the accuracy of its 

estimates while saving some resources, the question of the best destination of these resources should be 

investigated. Of course, this is another case-by-case question and a general answer would be impossible. In 

the context of official statistics, it can be important to highlight that the experimental nature of the 

processes and the novelty of some of the techniques may call for additional quality measures and control. 

Since the mission of official statistics concerns the production of transparent, accurate and accessible data, 

it may be worth spending some of the additional resources to maintain regular operations of quality 

assurance and quality control for the processes involving machine learning. This would ensure greater 

transparency for the users of the data and a deeper insight on the technical aspects of machine learning for 

the data producers.  



 

30 
 

7.0 Summary and recommendations 

 
NSOs around the world are modernizing and many are looking at modern statistical algorithms to play a 

significant part of their modernization journey. Modern statistical algorithms have plenty to offer in terms 

of increased efficiency, potentially higher quality and the ability to process new sources of data such as 

satellite images. The challenge comes from deciding on when modern algorithms should be used or should 

replace existing algorithms. Many modern algorithms have been developed under a prediction context and 

are designed to minimize prediction error. However, most algorithms currently used in official statistics 

have been developed to produce inferentially correct outputs. Comparing methods developed under these 

two paradigms is not easy. 

 

The proposed Quality Framework for Statistical Algorithms (QF4SA) is a first attempt to lay down some 

groundwork to guide official statisticians in comparing algorithms (be they traditional or modern) in 

producing official statistics. The five dimensions are applicable for traditional and modern algorithms and 

provide food for thought to official statisticians in choosing between different algorithms. Based on the 

QF4SA, the working group is proposing the following recommendations: 

 

1) It is recommended that all the five dimensions of QF4SA should be considered when deciding on 

the choice of an algorithm, and particularly choosing between traditional and ML algorithms. 

 

2) Understanding that explainability is a major barrier for wide acceptance of ML algorithms, it is 

recommended that NSOs explore/use the methods outlined in the Explainability chapter to help 

users understand the relationship between input and output variables. This understand by data 

users can help eliminate some of the black box concerns associated with ML. This will contribute to 

an increased acceptance and trust in ML algorithms. 

 

3) Ideally, NSOs should estimate the expected predication error using methods such as cross 

validation or other appropriate resampling methods. The use of these methods is valid only if the 

training sets are generated from the data in the same fashion as the data are generated from the 

population. This underlines the importance of properly constructed training sets. For instance, 

training data containing only females should not be used to train a model to predict male incomes. 

It is, therefore, recommended that NSOs use high quality training data when applying prediction 

algorithms, which will also facilitate the estimation of expected prediction errors. In this context 

high quality training data means data that is representative of the population in question. 
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4) Recognizing the role that reproducibility plays in gaining the trust of data users, the QF4SA is 

recommending that, as a minimum, NSOs will take action to give effect to the implementation of 

Methods reproducibility. As well, where it is possible and desirable to do so, Inferential 

reproducibility, limited to only the replication of the analysis using different but applicable 

algorithms and assumptions, should be carried out as well. We note that for inferential 

reproducibility, the results of a chosen method need only be corroborated by alternative 

algorithms or assumptions. They do not need to be the same. When the alternative algorithms or 

assumptions do not corroborate the original results, the NSO should ensure that it understands 

why it is so and convince itself that the method chosen is warranted. 

 

5) Timeliness is a dimension which is covered by most, if not all, existing quality frameworks. 

However, the timeliness dimension commonly used is defined as the time between the end of the 

reference period and the availability of the information sought. For certain processes leading to the 

production of statistics outputs, it is recognized that modern algorithms could lead to significantly 

shorter development and processing times in comparison to traditional algorithms. Examples of 

these processes include industry and occupational coding and image processing. Therefore, the 

QF4SA is recommending that development and processing time be added to the commonly used 

concept of timeliness 

 

6) A motivating factor of the modernization of NSOs is cost effectiveness. By considering alternative 

data sources, NSOs are looking to reduce collection costs and respondent burden. For some 

alternative data sources, satellite images for example, modern algorithms are the only choice 

available to process them. When evaluating the cost of potential algorithms, NSOs must consider 

fixed costs, as well as ongoing costs. Examples of fixed costs include the establishment of IT 

infrastructure and retraining of employees to work in the new infrastructure. We note that the 

fixed costs can be amortized over time or across projects. Examples of ongoing costs include IT 

maintenance, cloud storage for the data, cost of acquisition of the data and processing time.  

Processing time in particular could be significantly reduced under certain circumstances by using 

modern methods. With these costs in mind, the QF4SA is recommending NSOs consider two 

aspects in particular when considering cost effectiveness: Cheaper operating costs and Time to 

recoup fixed costs. 
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