The imputation of the “Attained level of Education” in the base register of individuals: an experimentation using Machine Learning techniques

Fabrizio De Fausti, Marco Di Zio, Romina Filippini, Simona Toti, Diego Zardetto
HMG-MOS Machine Learning Italy pilot

THE AIM
Determine how and where Machine Learning techniques (ML) can give greater benefits in solving the imputation problems compared with classic statistical models.

Target Variable and Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td></td>
<td></td>
<td>A (8%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B (89%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C (4%)</td>
<td></td>
</tr>
</tbody>
</table>

About 5% with Target variable
Different imputation steps (due to the complexity of available information and different patterns).

A: $P(\text{ALE18} \mid \text{ALE17}, \text{age18}, \text{citiz18})$
B: $P(\text{ALE18} \mid \text{ALE17}, \text{age18}, \text{citiz18}, \text{prov18}, \text{gender})$
C: $P(\text{ALE18} \mid \text{age18}, \text{gender}, \text{citiz18}, \text{apr})$
METHODS:

ML technique: Multi Layer Perceptron (MLP)

- All available variables
- One imputation step
- Dummy representation
- No pre-treatment

- two hidden layer with 128 neurons
- fully connected
- dropout
- deep learning framework

KERAS
RESULTS:

Comparison between target and estimated distributions

Legend:
- target
- estim.
- target=estim.

Log-lin.

MLP
RESULTS:

Estimated ALE distributions for individuals with a PhD (item 8)

Log-lin.

MLP

Bar length \propto \text{frequency of predicted ALE}
RESULTS:

Micro-level accuracy: Log-linear vs MLP

<table>
<thead>
<tr>
<th>Fold</th>
<th>Target=estimated</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Log-lin.</td>
<td>MLP</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.722</td>
<td>0.735</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.721</td>
<td>0.736</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.723</td>
<td>0.737</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.721</td>
<td>0.735</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.721</td>
<td>0.734</td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>0.721</td>
<td>0.735</td>
</tr>
</tbody>
</table>

Model accuracy is calculated using the 5-fold approach.

Micro level accuracy of imputed ALE 2018 using ML technique is very similar to those originated from Log-Linear models: 73.5% vs 72.1%

variance of results is in both cases negligible.
CONCLUSIONS:

- The results of estimation with the two approaches are completely comparable.

- For particular sub-population, such as extreme items (PhD), Log-linear imputation is better.

- MLP micro accuracy is a bit better respect the loglinear model

- MLP approach does not require variables pre-treatment
Fabrizio De Fausti e-mail defausti@istat.it