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Abstract 

This paper is written for managers and policy makers to inform them about the possibilities to use 

machine learning (ML) in the production of official statistics and to demystify ML for those official 

statisticians unfamiliar with it. After providing some background on official statistics and ML, the 

paper explains why ML is becoming relevant for official statistics. The possible uses of ML in official 

statistics are presented for primary data (probability samples) using the GSBPM process model, and 

for secondary data (registers, big data/ non-probability samples and mixed sources). Finally, issues 

about quality are discussed, which we believe should be addressed with high priority. 

 

1. Introduction 

Computers have learned to paint in the style of Rembrandt (www.nextrembrandt.com) and to 

compose music in the style of Bach (Hadjeres et al. 2017). Chess computer Deep Blue already 

defeated the world champion over twenty years ago, question-answering computer Watson won the 

quiz show Jeopardy! in 2011 and last year the computer program AlphaZero learned from scratch to 

play three board games at superhuman level by playing against itself (Silver et al. 2017). But the fact 

that even creative jobs such as painting or composing music can be learned by computers without 

being explicitly programmed is the strongest illustration of the power of artificial intelligence. 

 

These awe-inspiring and perhaps disturbing developments in Artificial Intelligence (AI) are driven by 

machine learning (ML) techniques in combination with the availability of an unprecedented amount 

of digital data and powerful IT infrastructures. Digital data often are merely a noisy by-product of 

non-statistical processes, but they contain signals of human activity that could be mined for the 

production of official statistics. Using big data to produce honest, precise and unbiased information 

that can be used for evidence-based policy making is a major challenge for producers of official 

statistics. ML is an indispensable tool to tackle this problem (Jordan and Mitchell 2015). In addition, 

the ability of computers to learn statistical tasks such as classification, regression and clustering calls 

for a review of the current statistical processes to see where ML can be of assistance. Chu and 

Poirier (2015) listed some ML applications already in use or in consideration at statistical offices. The 

current paper has a broader scope and aims to identify further opportunities. 

 

http://www.nextrembrandt.com/
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This paper is written for managers and policy makers to inform them about the possibilities that we 
see to use machine learning in the production of official statistics. We also try to remove suspicion 
among some skeptical official statisticians by taking a balanced position. Statisticians can learn from 
computer science to solve a wider range of problems (Breiman 2001). We focus on applied or 
narrow AI rather than artificial general intelligence. Whether or not computers can actually create 
something new is outside the scope of this paper. The ability of computers to implicitly learn specific 
tasks suffices to qualify as a useful tool for the production of official statistics. 

 

The structure of the paper is as follows. We start with the main conclusions and some 

recommendations for follow-up activities (Section 2). In the core of this paper we first give some 

background on official statistics and machine learning (Section 3). In the next sections, we discuss 

the use of machine learning in official statistics based on primary data (Section 4) and secondary 

data (Section 5). Primary data are collected for statistical purposes, usually by sending a 

questionnaire to a probability sample of the target population. Secondary data such as 

administrative registers and big data are not collected for statistical purposes but may contain 

statistical information. We close with some considerations about quality (Section 6). 

 

2. Conclusions and recommendations 

National Statistics Organizations (NSOs) are now looking more and more at secondary data sources 

and with it come many opportunities as well as some challenges. The processing of secondary data is 

steering NSOs to the use of ML techniques which include algorithmic models and other big data 

tools. These tools are not just in the secondary data domain: some of the techniques can, and 

should, be used in the processing of primary data as well. However, these tools do not lend 

themselves well to the traditional quality frameworks, so work is required to develop a framework 

that can handle both primary and secondary data sources. The predictive approach discussed here 

seems to have some promise but generalizing the performance in non-probability samples to 

statistical populations remains an unsolved challenge. 

 

A key recommendation is hence to develop a quality framework tailored to the use of ML 

techniques. Traditional statistical quality frameworks assume that the data-generating process and 

further data processing steps are explicitly known. When applying ML methods, especially to ‘found’ 

big data or in multisource statistics, these assumptions are usually not valid. To guarantee quality, 

reproducibility and transparency, which are core values of official statistics, it is important to identify 

suitable quality indicators and performance metrics. In addition, it seems useful to design guidelines 

for reproducibility/transparency/causal inference of ML-based statistics. 

 

The application of ML methods by nature implies interdisciplinary work. Modelers (methodologists), 

programmers (computer scientists) and subject matter specialists must work together. At the NSO 

level, teams should be formed that combine these different skills to achieve optimal results. An 

international ML project should similarly ensure a balanced composition. 

 

As Chu and Poirier (2015) have already shown, a lot of work has already gone on and since their 

paper the activity has increased further. It seems worthwhile to develop and maintain an inventory 

of ML projects carried out in the statistical community to learn from each other and stimulate 

further joint work, either in methods development or in practical applications. 
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Finally, there appears to be sufficient interest to launch a concrete international ML project under 

the HLG-MOS1 umbrella. Deliverables of such a project could cover generic aspects like design of a 

quality framework and guidelines or developing an inventory of ML projects, as well as specific 

aspects like concrete ML applications of mutual interest in areas like image recognition or 

automated coding. 

 

To summarize: while it is felt that ML has potential uses in Official Statistics, there are some issues 

that still need to be considered. The need to develop a quality framework and the potential loss of 

transparency from the use of ‘black box’ methods are two issues that immediately stand out. 

 

3. Background 

3.1 What are official statistics? 
According to the Organization for Economic Cooperation and Development “official statistics are 

statistics disseminated by the national statistical system, excepting those that are explicitly stated 

not to be official” (http://stats.oecd.org/glossary/). They provide qualitative and quantitative 

information on all major areas of citizens’ lives, such as economic and social development, health, 

education and the environment. The importance of these statistics is underlined in the first principle 

of the Fundamental Principles of Official Statistics (UN Statistical Commission) where it states that 

“Official statistics provide an indispensable element in the information system of a society, serving 

the government, the economy and the public with data about the economic, demographic, social 

and environmental situation” (https://unstats.un.org/unsd/dnss/gp/FP-New-E.pdf). For the most 

part, official statistics are produced primarily by NSOs which are responsible for producing “high 

quality official statistical information for analysis and informed policy decision-making in support of 

sustainable development, peace and security”. These official statistics are typically used by all levels 

of government and private citizens alike. 

3.2 What is machine learning? 
Machine Learning (ML) is the science of getting computers to automatically learn from experience 

instead of relying on explicitly programmed rules, and generalize the acquired knowledge to new 

settings. When there are both auxiliary information and a variable of interest, or labeled input, the 

machine can learn supervised because its performance can be tested; when there is only auxiliary 

information, or unlabeled input, the machine has to learn unsupervised, i.e. without feedback. In 

supervised ML, when the variable of interest is qualitative/categorical, the machine learns to solve a 

classification problem; when the variable of interest is quantitative/numeric, the machine learns to 

solve a regression problem. In unsupervised ML, the machine learns to solve a clustering problem. 

 

Figure 1 gives a schematic overview of supervised learning which is also applicable in the context of 

official statistics. In official statistics, we want to accurately estimate a variable of interest 𝑦 in a 

target population A. For instance, the unemployment rate in young people or CO2 emissions by the 

aviation industry. Auxiliary information 𝑥 is known for all elements in target population A but the 

variable of interest 𝑦 is only observed for the elements in sample B. ML might be used to make 

inference from sample B to population A. 

 

                                                 
1
 High-Level Group for the Modernisation of Official Statistics 

http://stats.oecd.org/glossary/
https://unstats.un.org/unsd/dnss/gp/FP-New-E.pdf
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Figure 1 Supervised machine learning 

 

Many other uses are possible. For instance, one could consider A a probability sample, B the set of 

respondents and use ML to correct for unit-nonresponse. In another scenario, A is the set of 

respondents, B the set with responses on both item 𝑥 and 𝑦 and ML is used to impute item-

nonresponse on item 𝑦. A fourth option could be that A contains observations of a proxy variable 𝑥, 

B contains observations of the variable of interest 𝑦 and ML is used to model measurement error. 

Finally, A could be a time series, B historic data and ML is used for nowcasting. 

 

We discern six steps in supervised learning: 

1. The labeled input (B) is randomly split into a training set (blue) and a test set (purple). 

2. The model or algorithm learns the relationship between 𝑥 and 𝑦 in the training set. 

3. The model or algorithm is used to predict 𝑦, �̂� (orange) from 𝑥 in the test set. 

4. Predicted values �̂� are evaluated against observed values 𝑦 in the test set. Steps 2 through 4 

are repeated with different (hyper)parameters until the prediction error is minimal. 

5. Steps 1 through 4 are repeated for different splits to prevent overfitting. Nested cross 

validation may be performed to tune (hyper)parameters in an inner loop and estimate 

generalization error in an outer loop. 

6. Unobserved values are predicted from 𝑥 outside the sample using the model or algorithm 

that gives, on average, the smallest prediction error in the splits. 

 

The crucial step is learning the relationship between 𝑥 and 𝑦 in the training set (step 2). Many 

algorithms exist for this purpose, such as random forests, neural networks and support vector 

machines. They differ from classical regression techniques by focusing on minimizing prediction 

error rather than causal explanation (Shmueli 2010) and are potentially better suited for modeling 

non-linear relationships in high-dimensional space. Moreover, 𝑥 can be anything from classical 

numerical information to natural language text, audio recordings, images or video—just as long as 

the data 𝑥 are in digital format. Several performance measures are available to quantify prediction 

error, most notably mean squared error in regression and Matthews correlation coefficient in 

classification. 

 

The success of supervised ML largely depends on the predictive power of 𝑥 and the size of the 

training data. Sample survey data are limited in the size of the training data (small 𝑛) but are 

typically rich in the number of auxiliary variables (large 𝑝). Big data on the other hand are named 

after the huge amounts of data (large 𝑛) but are often limited in the number of variables (small 𝑝). 

We therefore expect the biggest gain in register-based statistics with both large 𝑛 and large 𝑝. 
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3.3 Why machine learning is becoming relevant for official statistics 
NSOs are currently facing unprecedented pressure to evaluate how they operate. Years of declining 

response rates to primary data collection efforts and the proliferation of readily accessible data, 

which has made it easier for private companies to produce statistics, is putting into question the role 

of NSOs. In response, many NSOs are looking to tap into these alternative data sources to 

supplement, or even replace, data collected by traditional means. 

 
One of these alternative data sources being investigated as a potential source for official statistics is 
big data (Hassani et al. 2014; Daas et al. 2015). Typically, volume, velocity and variety, the three V’s 
of big data, are used to characterize the key properties of big data: 
 

 ‘Volume’ refers to the size of the dataset. 

 ‘Velocity’ refers to the data-provisioning rate and to the time in which it is necessary to act 
on them. 

 ‘Variety’ refers to the heterogeneity of data acquisition, data representation, and semantic 
interpretation. 

 
In projects implemented by NSOs to date, the three Vs do not necessarily characterize a big data 
source in a simultaneous way. For instance, if looking at the pilots of the recent ESSnet on big data 
(https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/index.php/Main_Page): web scraping of 
job vacancies is mainly affected by ‘Variety’, Automatic Identification System (AIS) vessel tracking 
data are mainly characterized by ‘Volume’ and ‘Velocity’, Twitter data for social mood detection by 
‘Variety’ and ‘Volume’. 
 
Big data do not naturally fit within the established quality framework of official statistics. The main 
reason for this is that the data generating mechanism of big data sources does not fall under the 
NSO’s control and is typically unknown. This is evidently at odds with statistical surveys, whose data 
generating mechanism is designed by the NSO through probability sampling, but also with 
administrative data sources, whose data generating mechanism is at least known to the NSO. As a 
consequence, the development of sound methodologies to extract valid statistical information from 
big data is still fairly embryonic: how to guarantee the quality of inferences drawn from big data is a 
matter of current research. 
 
While the “found data” nature of big data definitely calls for out-of-the-box statistical thinking and 
novel inferential approaches, even only the ‘Volume’ and the ‘Variety’ dimensions of big data can 
wreck the traditional computation toolbox of official statistics. These two dimensions are further 
discussed in Section 4.1. 

 

If indeed NSOs move towards using big data to produce official statistics, ML techniques will almost 

surely become an indispensable tool. However, we feel that ML techniques do not have to be 

restricted to the domain of big data and many of them can be used in the current environment. As 

previously mentioned, depending on the format of the variable of interest (qualitative versus 

quantitative) supervised ML techniques lead to classification or regression and unsupervised 

learning leads to clustering. In the traditional framework, supervised learning could be used for 

imputation for missing data, prediction of response propensities, construction of groups for 

imputation, reweighting or calibration or coding to standard classifications. Unsupervised methods 

can be used for outlier or error detection.  

 

These situations are more fully developed in Section 4 where we discuss the use of ML in primary 

data. Uses of ML in secondary data, including big data, are discussed in Section 5. 
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4. ML in primary data  

We first consider ML in a primary data processing framework. To be more specific in which 

processes could benefit from ML, we use the Generic Statistical Business Process Model (GSBPM) as 

an underlying structure (https://statswiki.unece.org/display/GSBPM/GSBPM+v5.0). The GSBPM was 

developed under the auspices of the United Nations Economic Commission for Europe. It describes 

and defines the set of business processes needed to produce official statistics. The GSBPM places its 

focus on producing official statistics using primary data sources such as sample surveys and as such 

does not touch much on secondary data sources such as register or big data. The use of ML in these 

situations will be discussed later in the document. Version 5.0 of the GSBPM is given in Figure 2. 

 

 
Figure 2 Generic Statistical Business Process Model 

  

As one can see, the GSBPM consists of eight phases with sub-processes contained with each phase. 

The first phase (Specify Needs) covers activities associated with engaging data users to identify their 

data requirements and, as such, we do not see many opportunities for ML in this phase. 

 

In the second phase (Design), the statistical outputs, concepts, methodologies, collection instrument 

and operational processes are defined. The sub-process 2.4 (Design frame and sample) is an area 

where it is felt that ML could be applied. This sub-process, which only applies to statistical processes 

involving collection of data from a sample, includes the identification of a sampling frame. Sources of 

sampling frames include registers, administrative data, censuses and other surveys. These sources 

may be combined through record linkage processes where clustering algorithms could be used. 

When preparing sampling frames, the quality of the design information (industry, geography, 

activities, occupations, etc.) is of the utmost importance. These ‘coding activities’ are prime 

candidates for classification algorithms. 

 

https://statswiki.unece.org/display/GSBPM/GSBPM+v5.0
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In addition to coding type activities, ML can be used to validate the quality of the design information 

on the frame. For example, clustering methods can be used to identify outlying values in the design 

information. 

 

In the third phase (Build), there does not appear to be any opportunities to use ML as this phase 

mostly involves the creation and testing of production solutions. 

 

The fourth phase (Collect) includes sub-processes to create the frame, draw the sample and perform 

the collection. ML can be used in several of these sub-processes. Many surveys will stratify their 

frame in order to improve the efficiency of the resulting estimates. Classification techniques could 

be used to stratify the population in sub-phase 4.1. 

 

The next sub-process where ML could be used is 4.3 (Run Collection). While ML may not be helpful 

in the actual collection operation, it may be used in the management of the collection activity. Many 

NSOs are employing active collection management strategies to make the collection process more 

efficient. Many of these strategies use response probabilities that need to be estimated or 

predicted. Both traditional methods (e.g. logistic regression) and ML methods (e.g. regression 

algorithms) can be used to predict the probability of response for individual units using information 

available for the entire sample. These predicted response probabilities can then be used to manage 

collection activities in the most efficient manner. In order to improve the fit of the response 

propensity models, which are used to estimate the probabilities of response, they are commonly 

estimated for groups of units which exhibit similar behaviors. Classification methods can be used to 

‘optimally’ define these groups before estimating the propensity models within each of them. 

 

In adaptive collection designs, features such as the survey mode and the use of incentives may be 

tailored to subpopulations. Auxiliary information or paradata could be used in combination with 

clustering, classification or regression algorithms to classify units into the different subpopulations 

for improved response rates. 

 

Also during collection, in particular with electronic collection, data are verified as they are reported. 

Clustering methods could be used to identify outlying or erroneous data points during collection so 

that they can be corrected by the respondent or supervised learning could be used to predict the 

correct value. Finally many NSOs offer respondents the opportunity to record comments or 

questions. Natural language processing tools could be used to process these items and identify any 

of them which need to be responded to immediately. 

 

Moving to the fifth phase (Process), there are many opportunities for ML methods. Sub-process 5.1 

(Integrate data) integrates data from possibly multiple sources, so probabilistic record linkage 

techniques could be used if a common unique identifier is not available on all data sources. Once 

integrated, ML methods could be used to cleanse the data (identify outliers, errors, inconsistent 

records, etc.). Sub-process 5.2 (Classify and code) classifies and codes data to standard classification 

(industry, geography, commodities, etc.) and is a classic use of ML. 

 

Sub-process 5.4 (Edit and impute) deals with replacing data which are considered as incorrect, 

missing or unreliable. Supervised ML can be used to impute for missing or incorrect data. Since 

imputation is usually improved when homogeneous units are grouped into imputation classes, ML 

methods similar to those used for stratification can be used to define these classes. 
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Sub-process 5.6 (Calculate weights) is another area where classes are formed in a similar fashion to 

imputation classes, however for slightly different purposes. In the presence of unit non-response 

reweighting classes are often formed of units with similar probabilities to respond. It is common to 

use logistic regression models to estimate these response probabilities and then homogeneous 

groups are formed based on these response propensities. ML methods could also be used to define 

these groups. If auxiliary data are available, many surveys use a calibration estimator with multiple 

calibration groups which can be defined through the same ML techniques mentioned above. For 

both imputation classes and calibration group definition, ML techniques can be used to choose the 

best variables to be used in defining the class or group (subset selection). 

 

The sixth phase (Analysis) deals with preparing the statistical outputs and involves validation and 

interpretation of outputs and disclosure control. The validation and interpretation work is typically 

done by analysts but ML methods could possibly be used to identify outlying estimates. In addition, 

the classification error of a ML algorithm applied to privatized data might be used to strike a balance 

between privacy and utility during disclosure control (Mivule and Turner 2013). 

 

While the possibilities mentioned in this section may not be exhaustive, it is clear that there are 

many opportunities for ML in the processing of primary data. Table 1 summarizes opportunities for 

ML by task. 

 

Table 1 Possible use of machine learning in tasks encountered with the use of primary data 

Task Family of ML techniques GSBPM phase 

Record linkage Clustering 2.4, 5.1 

Coding Classification 2.4, 4.3, 5.2 

Outlier detection Clustering 2.4, 4.3, 5.1, 6.2 

Stratification Classification 4.1, 4.3, 5.4, 5.6 

Estimation Regression/classification 4.3 

Imputation Regression/classification 5.4 

Calibration Regression/classification 5.6 

Disclosure control Regression/classification 6.4 

 

5. ML in secondary data  

As previously mentioned, secondary data are not collected for statistical purposes but may contain 

statistical information of interest to NSOs. These data include big data, register data and the 

combination of these data with other sources, including possibly primary data. In this section, we 

discuss the use of ML techniques for big data, register data and multisource data. 

5.1 Big data 
As introduced in Section 2.3, the ‘Volume’ and the ‘Variety’ dimensions of big data challenge the 

traditional computation toolbox of Official Statistics. Here we discuss issues arising from ‘Volume’ 

and ‘Variety’ and provide arguments in favor of ML as a possible way to address such issues. 

 
Volume 

Classical methods in Official Statistics – like design-based and model-assisted survey sampling 

theory, regression estimation and so on – have been devised to process probability samples. As a 

consequence, mainstream algorithms implementing these methods perform well on small amounts 
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of high quality data. However, these algorithms typically exhibit high computational complexity; a 

feature that hinders their ability to be used on huge amounts of data. 

 

Consider linear regression for example: on a dataset with n observations and p variables, least 

squares estimation has O(p
3
 + n

 
p

2
) time complexity. Things are even worse in the case of iterative 

methods such as iteratively reweighted least squares or when solving calibration tasks by means of 

the Newton-Raphson algorithm. Not only are these algorithms so computationally demanding to 

become impractical for big data (especially when either p, or both n and p are very large), what is 

worse is that they are difficult to optimize by means of divide-and-conquer, or parallelization, 

approaches. As a result, many mainstream algorithms in computational statistics cannot easily take 

advantage of successful big data processing models and big data software frameworks like 

MapReduce and Spark/Hadoop. 

 

Besides being computationally intensive and hard to parallelize, many classical methods in official 

statistics are extremely sensitive to outliers and erroneous values, a circumstance that leads to 

tremendous efforts being made by NSOs in editing and imputing survey data. This challenge is 

exacerbated with big data as they are often very noisy and poorly curated and thus contain 

numerous outliers and erroneous values. In addition, the size of big data simply makes it impractical 

to perform complete and thorough data checking and cleaning.  

 

Modern ML approaches are better positioned than traditional statistical methods to enable 

scalability on big data sources. This may seem paradoxical at first, since successful ML methods like 

Random Forest or Deep Learning are well known to be computationally expensive and under certain 

circumstances, more expensive than traditional methods. However, many ML methods are easily 

parallelizable which make them prime candidates for processing big data. For instance, the Random 

Forest method is easily parallelizable because the trees composing the forest are built and trained 

independently on different samples. As a consequence, many fully distributed off-the-shelf 

implementations of Random Forest exist, which allow for very efficient processing of big data. 

Similarly, Deep Learning models, despite being computationally intensive, are inherently 

parallelizable, since neurons within each layer of the neural network are processed independently. 

Therefore Deep Learning applications can take advantage from specialized hardware architectures 

which are optimized for massively parallel computing. This way, tremendous reductions in 

computing time can be obtained, making it practical to train very complex Deep Learning models on 

big data. 

 

Moreover, many ML methods generally show less sensitivity to outliers and erroneous data than 

most classical statistical methods do. This follows from the fact that state-of-the-art 

implementations of these methods rely on subsampling approaches. As already mentioned, each 

tree within a Random Forest is fit on a subsample of the original data, which in turn involves only a 

random subset of the original explanatory variables. After fitting, the predictions of all the trees are 

aggregated or averaged. Subsampling (during training) and averaging (in prediction) implicitly 

smooth the input data, largely mitigating the effects of outliers and errors. Indeed, outliers and 

errors, being relatively rare combinations of values, will contaminate and bias just a minority of the 

subsamples/trees, therefore leaving the overall model almost unaffected. A very similar mechanism 

of sub-sampling makes Deep Learning applications robust against anomalous data.  

 

As a last (and perhaps conclusive) reason that a switch to ML is in order, we note that state-of-the-

art big data analytics frameworks adopt ML techniques that cover simple classical models such as 

linear regression.  
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Variety 

In Official Statistics, both survey data and administrative data are very much structured. The data 

model that is typically used within a traditional processing pipeline is the “case by variable” matrix, 

where cases are represented by records, variables are represented by records’ fields, and records 

have a fixed number of fields of definite type. 

 

The ‘Variety’ dimension of big data deals with loosely structured or even unstructured data. 

Traditional methods like generalized linear models work with “case by variable” data and hence 

cannot easily cope with data where observed variables can change from one case to another. If data 

are entirely unstructured, for example natural language texts, the challenges with traditional 

methods are even bigger, because a natural notion of “variable” no longer exists. Instead, 

meaningful features have to be somehow extracted from raw data. When performed by human 

analysts, this data-preparation step is called feature engineering. On the contrary, some ML 

techniques (notably Deep Learning) have the ability to automatically extract features from raw data 

that are useful for the task at hand. 

5.2 Register data 
Register data are often referred to as big data because enumerating a population results in a big 

dataset. The distinction is not based on size but structure: a register is a complete list of identifiable 

objects in a population (Wallgren and Wallgren 2007). By this definition, sensor data may or may not 

be (repeated measures) register data, depending on whether or not they can be linked to 

identifiable population units. Administrative registers are secondary data to statistical offices 

because they are maintained by other organizations for administrative rather than statistical 

purposes. National legal frameworks may provide statistical offices access to register data. Statistical 

registers are a goldmine for statistical analyses, especially to study small domains, rare events and 

longitudinal processes (Connelly et al. 2016). Given the large number of cases (large 𝑛) and rich set 

of auxiliary variables (large 𝑝), statistical registers also provide ample opportunities for ML 

(Thompson 2018). These are not yet fully appreciated. 

 

Social scientists are interested in understanding social phenomena but often without the ability to 

conduct experiments. For instance, what distinguishes people that move to a new address from 

people that stay? What auxiliary variables relate to people finding or losing a job? What kind of 

company trades internationally? What are the profiles of companies which have gone bankrupt? 

How do social participation and trust differ between subpopulations (CBS 2015)? These questions 

can be answered using the observational data in statistical registers. They focus on association 

rather than causation due to the non-experimental nature of the data (Hand 2018). At first sight, 

there seem to be a dichotomy between young and old, lowly and highly educated, rich and poor, 

native and migrant, religious and secular, flex and permanent employees, urban and rural. Such 

potential determinants are, however, highly correlated and confounded. To isolate the effect of one, 

it would be necessary but practically impossible to correct for all the others. That is, what is the 

effect of age within lowly educated, rich, native, religious, flex employees in urban areas? 

 

In situations like this, stepwise regression is routinely applied to select the model that optimally 

balances goodness of fit and parsimony. Dimension reduction techniques and mixed-effects models 

may be used to compress the number of parameters to be estimated. Lasso and ridge regression 

additionally penalize the magnitude of the regression coefficients to prevent overfitting. Model 

averaging may be applied when support for the best model is strong but not unequivocal (Symonds 

and Moussalli 2011).  
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Although parametric model-based methods are powerful and insightful, they suffer from two main 

issues. First, when the number of potential predictors is high, the number of possible models quickly 

becomes unwieldy. Second, both nonlinear relationships and higher-order interactions need to be 

defined explicitly. Within official statistics, ML methods such as neural networks are an 

underexplored alternative to model nonlinear relationships and complex interactions. 

Unsupervised, objects can be clustered in the high-dimensional space spanned by the rich set of 

features. Supervised, the clustering in high-dimensional space can be used to impute missing 

observations (de Waal et al. 2011) or to extrapolate relationships to unobserved subpopulations. 

5.3 Multisource Statistics 
Multisource statistics are based on multiple data sources such as combinations of one or more 

surveys, administrative registers or big datasets. We do not discuss techniques and methods to 

integrate, link or match data sources, but more the role of ML in analyses that can be conducted on 

linked data. Readers interested in the topic of data linking as such can consult, for example, Christen 

(2012) or Harron et al. (2015). Authors considering data linkage or matching specifically in relation to 

administrative or big data sources include, for example, Harron et al. (2017) and Lohr and 

Raghunathan (2017). An important determinant of which ML approaches are applicable in 

multisource statistics is the degree to which data sources can be integrated. We distinguish three 

levels of linkage and discuss the possibilities for use of ML in each. We pay particular attention to big 

datasets in relation to the more traditional survey and administrative sources for official statistics. 

 

Micro-level linkage – micro integration 

Micro-level linkage is achieved when individual units in multiple datasets can be associated with 

each other which often requires the presence of unique identifiers. When units observed in a big 

dataset can be linked to units present in one or more administrative registers, the big data records 

can be enriched with administrative data by providing auxiliary variables that can be used in 

estimation and prediction models to predict variables only observed in the big data. At the same 

time, the administrative data can be considered as the population frame which may help explain the 

data generating mechanism of the big data source, and hence remove or reduce bias potentially 

present in population estimates based on big data. An example is Buelens et al. (2018), where 

different ML methods are compared to predict annual mileage of cars.  

 

Linking big data to survey data is another approach that could be used to remove selection bias in 

big data caused by non-random selection. In this setting, measurements for the surveyed units 

would be obtained from the big data source. When exact linking is not possible, sample matching 

can be applied to seek for similar, representative units which are not necessarily identical (Baker et 

al. 2013). The goal again is to achieve better representativity than that of the big data set alone. 

 

Macro-level linkage – macro integration 

With macro-level linkage we refer to data linking situations in which units from multiple sources 

cannot be linked or matched individually, but where they can be associated at some aggregate level. 

Examples include people in the same municipality, or businesses in the same industry or size class. 

Tennekes and Offermans (2014) use mobile phone metadata that can be geo-located accurately but 

that cannot be linked to individuals. They propose bias corrections at aggregated levels by linking the 

big mobile phone data to administrative registers at the municipal level. 

 

Explicit modeling of survey based estimates using big data sources at aggregated levels as covariates 

is proposed by Marchetti et al. (2015) and applied by, for example, Pappalardo et al. (2015). These 
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are applications of area-level models within the small area estimation framework (Rao and Molina, 

2015) which do not require unit-level linkage but at the same time exploit correlations that may exist 

between sources. Extensions of such approaches are possible where the traditional type of 

regression models would be replaced by ML predictive models. Literature on such approaches seems 

to be lacking. 

 

No linkage 

When no linkage is possible, data from multiple sources can be used for confrontation purposes. If 

multiple instances of the dataset are available through time, there are still possibilities to combine 

the data sources through a time series approach. Temporal correlation between the series can be 

used to improve nowcasting or forecasting accuracy. 

 

Van den Brakel et al. (2017) improve the accuracy of survey based estimates through a structural 

time series modeling approach in which a big data time series is used as an independent covariate 

series. The big data time series is derived from social media messages and reflects the sentiment in 

the text of the messages. While the messages (such as from Twitter) cannot be linked to individuals, 

and cannot be aggregated at a sufficiently detailed level, this approach allows for exploiting 

temporal correlation. 

 

6. Quality Considerations 

Point estimates are hard to interpret without information about their quality, including accuracy, 

precision and reliability aspects. Many NSOs have policies about informing their users of the quality 

of their official statistics. The most common traditional indicator of quality of a point estimate is the 

mean squared error, combining bias and (sampling) variance. Other, indirect quality indicators 

include response rates, imputation rates and coverage rates. With the move towards increased use 

of secondary data, the traditional use of a probability sample and an unbiased estimator minimizing 

sampling variance will not be applicable as the data-generating mechanism is typically not known. In 

addition, with the transformation from data scarcity to data deluge, the contribution of non-

sampling errors to the total error will increase. Thus different measures of quality are required when 

secondary data and/or ML are being used.  

 

An approach commonly used in machine learning is one which aims to minimize the prediction error 

in a test set. This approach is particularly useful when algorithmic models are used as they do not 

assume a stochastic process. Under this approach, many ML techniques perform much better than 

traditional approaches in terms of predictive accuracy in certain situations. Examples include face 

and speech recognition which call for highly complex models to reach high predictive accuracy. In 

other situations where the traditional methods fit the problem well from a theoretical perspective 

and produces high predictive accuracy, there may be no need to consider ML methods.  

 

The predictive accuracy of supervised methods can be estimated via (nested) cross-validation; 

applying the method to a test set and comparing the results to the truth. However, in case the 

training data is a non-probability sample of the target population, the actual accuracy of the method 

may well be worse when applied to previously unseen data in the future and the predictions should 

not be trusted alone (Elliott and Valliant 2017; Buelens et al. 2018). 

 

Predictive accuracy of a method can also be improved by using feedback information from the 

model to increase the training set. For instance, suppose a model is used to identify units with a high 
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probability of being in error. These units can be resolved manually, added back to the training set 

and new model parameters can be calculated, thus improving the predictive accuracy. 

 

As NSOs continue to investigate the use of secondary data and/or ML to produce official statistics, 

the inferential framework based on primary data only needs to be re-evaluated and expanded to 

cover secondary data sources. The predictive approach discussed here seems to have promise but it 

needs to be fully thought out and how it can be combined with the traditional one needs to be 

established. 

 

All in all, ML requires a different approach to quality than the one official statisticians are familiar 

with. We should be aware of possible algorithmic bias and lack of fairness when applying ML. 

Carryover effects may appear in supervised methods, so posterior analysis are necessary to diminish 

any risk and to assess the use of a specific ML technique. And last but not least, an important issue 

often is how to obtain sufficient transparency of ML-based results. 
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