

USING AUXILIARY DATA SOURCES IN THE STRUCTURAL SURVEY IN THE SERVICE SECTOR

Thomas Zimmermann (Destatis)

EESW17 - European Establishment Statistics Workshop 2017

Session 1: Sampling Design

Southampton, 30/08/2017

Background on the survey

- Provides relevant information on medium-term developments and structural changes for the service sector
- Sampling fraction ≤ 15 % of the total number of units in the population
- Stratification by NUTS1 regions, NACE4, and size classes determined by turnover (or # employees)
- Allocate sample sizes such that precise HT estimates for turnover are obtained for stratum groups (NUTS1 x NACE4)

Current Approach

Minimize the maximum weighted coefficient of variation in stratum groups, i.e.

$$F = \max_{g \in G} W_g^q \cdot CV(\widehat{Y}_g) = \max_{g \in G} \frac{W_g^q}{Y_g} \sqrt{\sum_{h \in g} N_h^2 S_h^2 \left(\frac{1}{n_h} - \frac{1}{N_h}\right)}$$

subject to

$$m_h \leq n_h \leq M_h, \forall h$$

$$\sum n_h \le n$$

We use $m_h = 3$, $M_h = N_h \forall h$ as well as $W_g = Y_g$, q = 0.2.

Comments

- Heterogeneity leads to highly unequal sampling fractions and large number of take-all strata
- Court decision: Spread response-burden more evenly and take-all strata only acceptable if imperative to quality
- Revision of the sample design is currently studied
- Additional idea: Exploit auxiliary information at the estimation stage

Alternative estimation methods

Requirements

- A single weight should be attached to each unit in the sample
- Good design-based properties
- Coherence with other statistics

→ Calibration estimators

- SAS macro CALMAR from INSEE
- GREG calibration and raking ratio approach considered

Potential sources of auxiliary information

- Sampling frame
- Business register
- Administrative data record

Variables: Turnover, Number of employees, number of enterprises

Account for misclassified units by logistic regression model

Comparison of the models

Model	Calibration constraints	n	R_{TUR}^2	R_{EMP}^2
SF-1	N for NUTS1, NACE2, SC Total TUR for NUTS1, NACE2, SC (all from SF)	153 699	0.951	0.837
SF-2	N for NUTS1, NACE2, SC Total TUR for NUTS1 (all from SF)	153 699	0.864	0.353
BR-1	N for NUTS1, NACE2, SC (from SF) Total TUR for NUTS1, NACE2, SC (from BR)	152 872	0.909	0.844
BR-2	N for NUTS1, NACE2, SC (from SF) Total TUR and EMP for NUTS1 (from BR)	152 342	0.905	0.967
BR-3	N for NUTS1, NACE2 (from SF) Total TUR and EMP for NUTS1 (from BR)	152 342	0.905	0.967

Variation of the g-weights

Deviations from HT estimate in %

	SF-1	SF-2	BR-2	BR-3
TUR	-0,84	-0,88	0,38	0,60
EMP	-0,36	-1,38	1,95	2,02

- Estimates are comparable at the national level
- Differences up to 7 % for NUTS1-regions

CVs on NUTS1 regions (TUR)

CVs on NACE4 classes (TUR)

CVs on NUTS1 regions (EMP)

CVs on NACE4 classes (EMP)

Questions for further discussion

- 1. Does your NSI apply some variant of regression / calibration estimation in business surveys?
- 2. If so, how do you cope with outliers and highly variable data in the covariates?
- 3. Do you have experience in smoothing your estimates across time or sectors?

THANK YOU FOR YOUR ATTENTION!

Thomas Zimmermann

Telefon: +49/(0) 611 / 75 38 41

thomas.zimmermann@destatis.de

www.destatis.de

