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Introduction

Objective:

To find an efficient strategy (in terms of variance) for estimating
the total of a study variable, y .

y is known to be right-skewed.

One quantitative auxiliary variable, x , is available.

We will work under the model assisted approach.
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General Regression Estimator

t̂GREG =
∑
U

ŷk +
∑
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eks
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General Regression Estimator, Case 1

Let xk = 0 for all k ∈ U, we have

B̂ =

(∑
s

x′kxk
akπk

)−∑
s

x′kyk
akπk

= 0

Then ŷk = xkB̂ = 0 and eks = yk − ŷk = yk − 0 = yk .

The GREG-estimator becomes

t̂GREG =
∑
U

ŷk +
∑
s

eks
πk

=
∑
U

0 +
∑
s

yk
πk

= t̂π

The HT-estimator can be seen as the case where no auxiliary
information is used into the GREG-estimator.
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General Regression Estimator, Case 2

Let ak = cj and xk = (x1k , x2k , · · · , xJk) with xjk defined as

xjk =

{
1 if k ∈ U ′j
0 if not

where the U ′j (j = 1, · · · , J) form a partition of U.

The post-stratified estimator is obtained when this type of
auxiliary information is used in the GREG-estimator.

The residuals become Ek = yk − ȳU′
j

(k ∈ U ′j ).
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General Regression Estimator, Case 3

Let ak = c and xk = (1, zk), with zk = f (xk) and f known.

The regression estimator is obtained when this xk is used in the
GREG-estimator.

The residuals become

Ek = yk + B2
tz
N
− ty

N
− B2zk with B2 =

Ntzy − tz ty
Ntz2 − t2

z

where ty =
∑

U yk , tz =
∑

U zk , tz2 =
∑

U z2
k and tzy =

∑
U zkyk .
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General Regression Estimator
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with Ek = yk − x′kB where B =
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The following are sufficient conditions for a zero-variance:

1 Ek = 0 for all k ∈ U;

Estimator

2

3

Although not leading to a zero-variance, we can consider

2 πk ∝ |Ek |. Design
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Super-population model

The statistician is willing to admit that the following model
adequately describes the relation between y and x.
The values of y are realizations of the model ξ0

Yk = δ0 + δ1xδ2
k + εk

Eξ0 (εk) = 0 Vξ0 (εk) = δ3x2δ4
k Eξ0 (εkεl) = 0 (k 6= l)

where moments are taken with respect to the model ξ0 and δi are
constant parameters.

δ0 + δ1xδ2
k will be called trend and δ3x2δ4

k will be called spread.
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Super-population model
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k

δ3x2δ4
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Super-population model
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Strategy πps—reg

Yk = δ0 + δ1xδ2
k + εk with Vξ0 (εk) = δ3x2δ4

k

If ξ0 holds and δ2 and δ4 are known, it is natural to use
xk = (1, xδ2

k ) in the GREG-estimator.

And a proxy for |Ek | is Ẽk = δ
1/2
3 xδ4

k .

This suggest the strategy πps—reg with πk = n
x
δ4
k

tδ4
x

, which is

sometimes referred as “optimal”.
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Strategy πps—reg
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Strategy πps—reg
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Research questions

Our hypothesis is that, as it strongly relies on the model, the
strategy above is not robust.

We will compare πps—reg with other four strategies.

1 When ξ0 holds and δ2 and δ4 are known, is, in fact, πps—reg
the “best”strategy?

2 How does πps—reg behave with respect to other strategies in
terms of finite population characteristics?

3 When ξ0 does not hold, is πps—reg the “best”strategy?

4 How does πps—reg behave with respect to other strategies in
terms of finite population characteristics?
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Strategy STSI—reg

We use again xk = (1, xδ2
k ) in the GREG-estimator.

The proxies Ẽk ∝ xδ4
k are now partitioned, creating H strata. A

Simple Random Sample of elements is selected in each stratum.

This strategy, STSI—reg, is often called model-based stratification.

The stratum boundaries are obtained using the cum
√

f rule
on xδ4

k ;

The sample is allocated using Neyman allocation, i.e.

nh = n
NhSxδ4 ,Uh∑
j NjSxδ4 ,Uj
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Strategy STSI—reg
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Strategy STSI—HT

We use xk = 0 in the GREG-estimator (i.e. the HT-estimator).

The population is stratified with respect to xδ2
k and a Simple

Random Sample of elements is selected in each stratum.

This strategy, STSI—HT, uses the auxiliary information only at the
design stage. It will be considered as a benchmark.

The stratum boundaries are obtained using the cum
√

f rule
on xδ2

k ;

The sample is allocated using Neyman allocation, i.e.

nh = n
NhSxδ2 ,Uh∑
j NjSxδ2 ,Uj
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Strategy STSI—HT
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Strategy STSI—HT

A comparison of stratified simple random sampling and sampling with probability proportional to size



Introduction Framework Simulation study Results

Strategy πps—pos

Let’s assume that ξ0 holds and δ2 and δ4 are known, but still we
plan to use the post-stratified estimator.

As the estimator must explain the trend, the population is
post-stratified with respect to xδ2

k in the same way as in STSI—HT.

A proxy for |Ek | is Ẽk = δ
1/2
3

√(
1 + 2

Nj

)
x2δ4
k +

t
x2δ4 ,U′

j

N2
j

= δ
1/2
3 vk .

The design is a πps with πk ∝ Ẽk .
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Strategy πps—pos
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Strategy STSI—pos

We decide to use the post-stratified estimator again in the same
way as above.

The proxies Ẽk ∝ vk are now partitioned, creating H strata. A
Simple Random Sample of elements is selected in each stratum:

The stratum boundaries are obtained using the cum
√

f rule
on vk ;

The sample is allocated using Neymal allocation, i.e.

nh = n
NhSv,Uh∑
j NjSv,Uj

A comparison of stratified simple random sampling and sampling with probability proportional to size



Introduction Framework Simulation study Results

Strategy STSI—pos
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Strategies

Estimator
Design HT Pos Reg

STSI 1 2 4
πps 3 5
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Simulation study under the correct model

A finite population of size N was generated as follows.

The auxiliary variable, x , is obtained as N realizations from a

Γ
(

4
γ2 , 12γ2

)
plus one unit, where γ is the skewness.

The study variable is generated as

Yk = δ0 + δ1xδ2
k + εk with εk ∼ N

(
0, δ3x2δ4

k

)
For each strategy, the variance of sampling n elements is
computed.

The procedure is repeated R = 5000 times.

The number of strata/post-strata, H, is the same for every
strategy.
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The simulation study

N = 5000

n = 500

γ = 3, 12

H = 5

δ0 = 0

δ1 = 1

δ2 = 3
4 ,

4
4 ,

5
4

δ3 two levels in order to obtain ρ(X ,Y ) = 0.65, 0.95

δ4 = 2
4 ,

3
4 ,

4
4
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Results

γ = 3, δ2 = 1, δ4 = 0.5, ρ = 0.95
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Results

γ = 3, δ2 = 1, δ4 = 0.5, ρ = 0.95
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Results

γ = 3, δ2 = 0.75, δ4 = 0.5, ρ = 0.65
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Results

γ = 12, δ2 = 0.75, δ4 = 0.75, ρ = 0.95
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Results

γ = 12, δ2 = 0.75, δ4 = 1.00, ρ = 0.95
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Results

γ = 12, δ2 = 1.25, δ4 = 1.00, ρ = 0.65
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Research questions

Our hypothesis is that, as it strongly relies on the model, the
strategy above is not robust.

We will compare πps—reg with other four strategies.

1 When ξ0 holds and δ2 and δ4 are known, is, in fact, πps—reg
the “best”strategy?

Not always!

2 How does πps—reg behave with respect to other strategies in
terms of finite population characteristics?

3 When ξ0 does not hold, is πps—reg the “best”strategy?

Not
always!

4 How does πps—reg behave with respect to other strategies in
terms of finite population characteristics?
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