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Introduction

Introduction

Objective:

To find an efficient strategy (in terms of variance) for estimating
the total of a study variable, y.

v is known to be right-skewed.
One quantitative auxiliary variable, x, is available.

We will work under the model assisted approach.
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Framework

General Regression Estimator

tGreG = ZYk + Z ks

with 9% = x| B and exs = yx — Pk, where

B ar
D _ XkXg Xk Yk
B= (X, 3%) o, un
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Framework

General Regression Estimator, Case 1

Let x, = 0 for all k € U, we have
N xxi\ X\ Vi
B= . = =0
(zs: amrk> Zs: agTk

Then i = x«B =0 and exs = yk — Jx = yx — 0 = yx.

The GREG-estimator becomes
2 _ ~ €ks Yk 4
tGREG—ZU:Yk+ZS:7rk _ZU:(H—ZS:”" =t

The HT-estimator can be seen as the case where no auxiliary
information is used into the GREG-estimator.
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Framework

General Regression Estimator, Case 2

Let ax = ¢j and xx = (Xik, X2k, - -+, Xgk) With xji defined as
1 ifke UJ{
Xij =
Ik 0 if not

where the UJ’ (=1,---,J) form a partition of U.

The post-stratified estimator is obtained when this type of
auxiliary information is used in the GREG-estimator.

The residuals become Ej = y, — ij (k € UJ’)

A comparison of stratified simple random sampling and sampling with probability proportional to size



Framework

General Regression Estimator, Case 3

Let ax = ¢ and xx = (1, z), with zx = f(xx) and f known.

The regression estimator is obtained when this x is used in the
GREG-estimator.

The residuals become

t, t _ Nt,, — t,t,
Ec=yi+BZ—2_B th  By=-2_2¥
kS Ve By Ty TR W 2T Ntp -2

where t, =" vk, t- =Dy 2k t2 = Yy 22 and tyy = > ZkYk-

A comparison of stratified simple random sampling and sampling with probability proportional to size



Framework

General Regression Estimator

Ec B’
AV, (terec) = ZZAM < - m)

with Ej = yj — x| B where B = (Eu x::k)* S

The following are sufficient conditions for a zero-variance:
Q@ EL =0 forall k e U;

2]
o
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General Regression Estimator
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AV, (terec) = ZZAM < - m)

with Ej = yj — x| B where B = (Eu x::k)* S

The following are sufficient conditions for a zero-variance:
Q@ EL =0 forall k e U;
Q m ox Ex;
o

A comparison of stratified simple random sampling and sampling with probability proportional to size



Framework
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Framework

General Regression Estimator

Ec  EN?
AV, (terec) = —5 ZZAM < - 7T/>

with Ej = yj — x| B where B = (Eu x::k)* S

The following are sufficient conditions for a zero-variance:
Q@ EL =0 forall k e U;

Q ok
© 7k  |Ek| together with my = mem; if k€ UT and | € U™;
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Framework

General Regression Estimator

Ec B’
AV, (terec) = ZZAM < - m)

with Ej = yj — x| B where B = (Eu x::k)* S

The following are sufficient conditions for a zero-variance:
Q@ EL =0 forall k e U;
Q Froctr
o mon cEp-together with w o miErif k= Uoand = U
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Framework

General Regression Estimator

Ec B’
AV, (terec) = ZZAM < - m)

with Ej = yj — x| B where B = (Eu x::k)* S

The following are sufficient conditions for a zero-variance:

Q@ EL =0 forall k e U;

Q Froctr

o mon cEp-together with w o miErif k= Uoand = U
Although not leading to a zero-variance, we can consider

Q 7k o |Egl.
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Framework

General Regression Estimator

Ec B’
AV, (terec) = ZZAM < - m)

with Ej = yj — x| B where B = (Eu x::k)* S

The following are sufficient conditions for a zero-variance:

@ E, =0 for all k € U; Estimator

Q mrockr

o mon cEp-together with w o miErif k= Uoand = U
Although not leading to a zero-variance, we can consider

@ 7k x |Eg|. Design
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Framework

Super-population model

The statistician is willing to admit that the following model
adequately describes the relation between y and x.
The values of y are realizations of the model &

Y. =00+ 51X£2 + €k

Eg (k) =0 Ve (k) = 330" Ego(eker) =0 (k#1)

where moments are taken with respect to the model & and §; are
constant parameters.

do + 61x,f2 will be called trend and 53x£54 will be called spread.
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Framework

Super-population model
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Framework

Super-population model
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Framework

Strategy mps—reg

Y = o+ (51X22 + €k with V£o (ek) = (53X,364

If £&o holds and &2 and §4 are known, it is natural to use
Xk = (1,x22) in the GREG-estimator.

And a proxy for |Ex| is Ei = 5;/2x,f4.

54
This suggest the strategy mps—reg with m, = n%, which is
sometimes referred as “optimal”.

A comparison of stratified simple random sampling and sampling with probability proportional to size



Framework

rategy mps—reg
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Framework

Strategy mps—reg
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Framework

Research questions

Our hypothesis is that, as it strongly relies on the model, the
strategy above is not robust.

We will compare mps—reg with other four strategies.

@ When &y holds and §, and 4 are known, is, in fact, Tps—reg
the “best”strategy?

@ How does mps—reg behave with respect to other strategies in
terms of finite population characteristics?

© When &y does not hold, is mps—reg the “best”strategy?

© How does mps—reg behave with respect to other strategies in
terms of finite population characteristics?
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Framework

Strategy STSl—reg

We use again xx = (1,x,f2) in the GREG-estimator.

The proxies By x,f“ are now partitioned, creating H strata. A
Simple Random Sample of elements is selected in each stratum.

This strategy, STSl—reg, is often called model-based stratification.

@ The stratum boundaries are obtained using the cum v/f rule

04
on x;*;

@ The sample is allocated using Neyman allocation, i.e.
Nh5x54 Uy

nNp = N—=sFxc———
h Zj Nj5x54,Uj
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rategy STSl—reg
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rategy STSl—reg
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Framework

Strategy STSI—HT

We use xx = 0 in the GREG-estimator (i.e. the HT-estimator).

The population is stratified with respect to ng and a Simple
Random Sample of elements is selected in each stratum.

This strategy, STSI—HT, uses the auxiliary information only at the
design stage. It will be considered as a benchmark.

@ The stratum boundaries are obtained using the cum V/f rule

d2.
on x.2;

@ The sample is allocated using Neyman allocation, i.e.
Nh5x62,Uh

nNh=Nss7e——
h Zj Nj5x52,Uj
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Framework

rategy STSI—HT
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Framework

Strategy STSI—HT
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Framework

Strategy mps—pos

Let's assume that &y holds and J2 and d4 are known, but still we
plan to use the post-stratified estimator.

As the estimator must explain the trend, the population is
post-stratified with respect to x22 in the same way as in STSI—HT.

~ tX25 Ul
A proxy for |Ey| is Ex = 5§/2\/<1 + %) le‘s“ + ,\;2UJ — 5§/2Vk-
! i

The design is a mps with 7y Ek.
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rategy mps—pos
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rategy mps—pos
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Strategy mps—pos
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Framework

Strategy mps—pos
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Framework

Strategy STSI—pos

We decide to use the post-stratified estimator again in the same
way as above.

The proxies Ei o vk are now partitioned, creating H strata. A
Simple Random Sample of elements is selected in each stratum:

@ The stratum boundaries are obtained using the cum /7 rule
on vy,

@ The sample is allocated using Neymal allocation, i.e.
= n NySy v,
h ZJ stv,Uj
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rategy STSl—pos
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rategy STSl—pos
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rategy STSl—pos
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Framework

Strategies

Estimator
Design | HT Pos Reg
STSI 1 2 4
mps 3 5
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Simulation study

Simulation study under the correct model

A finite population of size N was generated as follows.

The auxiliary variable, x, is obtained as N realizations from a

I %, 12+2) plus one unit, where v is the skewness.
5 Y) P

The study variable is generated as

Y = 0o + (51X22 + €k with €~ N (0, (53X£64>

For each strategy, the variance of sampling n elements is
computed.

The procedure is repeated R = 5000 times.

@ The number of strata/post-strata, H, is the same for every
strategy.
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Simulation study

The simulation study

e N =5000

e n=>500

e v=3,12

e H=5

@ 6p=0

e =1

° =313

@ 43 two levels in order to obtain p(X, Y) = 0.65,0.95
o bi=2.04
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Results

’7:3752 — 1754 :05ap:095
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Results
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Results

Results

’7:3752 = 1754 :05,/):095

s007
s .
25007 :
20007 -
'
150007 s
10007
500006 |
00000 |
STSI_HT STSI-pos 7ps - pos STSI-reg 7ps_reg

A comparison of stratified simple random sampling and sampling with probability proportional to size



Results

’7:3752 = 1754 :05,/):095

Results
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Results

Results

Y= 3, (52 = 0.75,54 = 0.5,p = 0.65
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Results

Results

v =12,6, = 0.75,54 = 0.75, p = 0.95
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Results

Results

v = 12,6, = 0.75,84 = 1.00, p = 0.95
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Results

Results

v =12,6, = 1.25,54 = 1.00, p = 0.65
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Results

Research questions

Our hypothesis is that, as it strongly relies on the model, the
strategy above is not robust.

We will compare mps—reg with other four strategies.

@ When & holds and §> and d4 are known, is, in fact, mps—reg
the “best” strategy?

@ How does mps—reg behave with respect to other strategies in
terms of finite population characteristics?

© When &y does not hold, is mps—reg the “best”strategy?

@ How does mps—reg behave with respect to other strategies in
terms of finite population characteristics?
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