A comparison of stratified simple random sampling and sampling with probability proportional to size

Edgar Bueno Dan Hedlin Per Gösta Andersson

Department of Statistics Stockholm University

Introduction

Objective:

To find an **efficient strategy** (in terms of variance) for estimating the **total** of a study variable, *y*.

y is known to be **right-skewed**.

One quantitative **auxiliary variable**, *x*, is available.

We will work under the model assisted approach.

$$\hat{t}_{GREG} = \sum_{U} \hat{y}_k + \sum_{s} \frac{e_{ks}}{\pi_k}$$

with $\hat{y}_k = \mathbf{x}_k' \hat{\mathbf{B}}$ and $e_{ks} = y_k - \hat{y}_k$, where

$$\hat{\mathbf{B}} = \left(\sum_{s} \frac{\mathbf{x}_{k} \mathbf{x}_{k}'}{a_{k} \pi_{k}}\right)^{-} \sum_{s} \frac{\mathbf{x}_{k} y_{k}}{a_{k} \pi_{k}}.$$

$$AV_p\left(\hat{t}_{GREG}\right) = -\frac{1}{2} \sum_{U} \sum_{U} \Delta_{kl} \left(\frac{E_k}{\pi_k} - \frac{E_l}{\pi_l}\right)^2$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^{-} \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

Let $\mathbf{x}_k = 0$ for all $k \in U$, we have

$$\hat{\mathbf{B}} = \left(\sum_{s} \frac{\mathbf{x}_{k}' \mathbf{x}_{k}}{a_{k} \pi_{k}}\right)^{-} \sum_{s} \frac{\mathbf{x}_{k}' y_{k}}{a_{k} \pi_{k}} = 0$$

Then $\hat{y}_k = \mathbf{x}_k \hat{\mathbf{B}} = 0$ and $e_{ks} = y_k - \hat{y}_k = y_k - 0 = y_k$.

The GREG-estimator becomes

$$\hat{t}_{GREG} = \sum_{U} \hat{y}_k + \sum_{s} \frac{e_{ks}}{\pi_k} = \sum_{U} 0 + \sum_{s} \frac{y_k}{\pi_k} = \hat{t}_{\pi}$$

The **HT-estimator** can be seen as the case where no auxiliary information is used into the GREG-estimator.

Let $a_k = c_j$ and $\mathbf{x}_k = (x_{1k}, x_{2k}, \dots, x_{Jk})$ with x_{jk} defined as

$$x_{jk} = \begin{cases} 1 & \text{if } k \in U_j' \\ 0 & \text{if not} \end{cases}$$

where the U'_j $(j=1,\cdots,J)$ form a partition of U.

The **post-stratified estimator** is obtained when this type of auxiliary information is used in the GREG-estimator.

The residuals become $E_k = y_k - \bar{y}_{U_i'}$ $(k \in U_j')$.

Let $a_k = c$ and $\mathbf{x}_k = (1, z_k)$, with $z_k = f(x_k)$ and f known.

The **regression estimator** is obtained when this \mathbf{x}_k is used in the GREG-estimator.

The residuals become

$$E_k = y_k + B_2 \frac{t_z}{N} - \frac{t_y}{N} - B_2 z_k$$
 with $B_2 = \frac{Nt_{zy} - t_z t_y}{Nt_{z^2} - t_z^2}$

where $t_y = \sum_U y_k$, $t_z = \sum_U z_k$, $t_{z^2} = \sum_U z_k^2$ and $t_{zy} = \sum_U z_k y_k$.

$$AV_{p}\left(\hat{t}_{GREG}\right) = -\frac{1}{2}\sum_{U}\sum_{U}\Delta_{kl}\left(\frac{E_{k}}{\pi_{k}} - \frac{E_{l}}{\pi_{l}}\right)^{2}$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^{-} \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

- 2
- 3

$$AV_p\left(\hat{t}_{GREG}\right) = -\frac{1}{2}\sum_{U}\sum_{U}\Delta_{kl}\left(\frac{E_k}{\pi_k} - \frac{E_l}{\pi_l}\right)^2$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^{-} \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

- $\mathbf{Q} \quad \pi_k \propto E_k;$
- 3

$$AV_p\left(\hat{t}_{GREG}\right) = -\frac{1}{2}\sum_{U}\sum_{U}\Delta_{kl}\left(\frac{E_k}{\pi_k} - \frac{E_l}{\pi_l}\right)^2$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^{-} \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

- 3

$$AV_p\left(\hat{t}_{GREG}\right) = -\frac{1}{2}\sum_{U}\sum_{U}\Delta_{kl}\left(\frac{E_k}{\pi_k} - \frac{E_l}{\pi_l}\right)^2$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^- \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

- **3** $\pi_k \propto |E_k|$ together with $\pi_{kl} = \pi_k \pi_l$ if $k \in U^+$ and $l \in U^-$;

$$AV_p\left(\hat{t}_{GREG}\right) = -\frac{1}{2}\sum_{U}\sum_{U}\Delta_{kl}\left(\frac{E_k}{\pi_k} - \frac{E_l}{\pi_l}\right)^2$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^{-} \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

- $ag{\pi_k} \propto E_k;$
- 3 $\pi_k \propto |E_k|$ together with $\pi_{kl} = \pi_k \pi_l$ if $k \in U^+$ and $l \in U^-$;

$$AV_{p}\left(\hat{t}_{GREG}\right) = -rac{1}{2}\sum_{U}\sum_{U}\Delta_{kl}\left(rac{E_{k}}{\pi_{k}} - rac{E_{l}}{\pi_{l}}
ight)^{2}$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^{-} \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

The following are sufficient conditions for a zero-variance:

Although not leading to a zero-variance, we can consider

$$AV_{p}\left(\hat{t}_{GREG}\right) = -\frac{1}{2}\sum_{U}\sum_{U}\Delta_{kl}\left(\frac{E_{k}}{\pi_{k}} - \frac{E_{l}}{\pi_{l}}\right)^{2}$$

with
$$E_k = y_k - \mathbf{x}_k' \mathbf{B}$$
 where $\mathbf{B} = \left(\sum_U \frac{\mathbf{x}_k \mathbf{x}_k'}{a_k}\right)^{-} \sum_U \frac{\mathbf{x}_k y_k}{a_k}$.

The following are sufficient conditions for a zero-variance:

- $E_k = 0$ for all $k \in U$; Estimator

Although not leading to a zero-variance, we can consider

Super-population model

The statistician is willing to admit that the following model adequately describes the relation between \mathbf{y} and \mathbf{x} . The values of \mathbf{y} are realizations of the model ξ_0

$$Y_k = \delta_0 + \delta_1 x_k^{\delta_2} + \epsilon_k$$

$$\mathsf{E}_{\xi_0}\left(\epsilon_k\right) = 0 \qquad \mathsf{V}_{\xi_0}\left(\epsilon_k\right) = \delta_3 x_k^{2\delta_4} \qquad \mathsf{E}_{\xi_0}\left(\epsilon_k \epsilon_l\right) = 0 \; (k \neq l)$$

where moments are taken with respect to the model ξ_0 and δ_i are constant parameters.

 $\delta_0 + \delta_1 x_k^{\delta_2}$ will be called *trend* and $\delta_3 x_k^{2\delta_4}$ will be called *spread*.

Super-population model

$$\delta_0 + \delta_1 x_k^{\delta_2} \\ \delta_3 x_k^{2\delta_4}$$

Super-population model

$$\delta_0 + \delta_1 x_k^{\delta_2} \\ \delta_3 x_k^{2\delta_4}$$

Strategy π ps—reg

$$Y_k = \delta_0 + \delta_1 x_k^{\delta_2} + \epsilon_k$$
 with $V_{\xi_0}(\epsilon_k) = \delta_3 x_k^{2\delta_4}$

If ξ_0 holds and δ_2 and δ_4 are known, it is natural to use $\mathbf{x}_k = (1, x_k^{\delta_2})$ in the GREG-estimator.

And a proxy for $|E_k|$ is $\tilde{E}_k = \delta_3^{1/2} x_k^{\delta_4}$.

This suggest the strategy π ps—reg with $\pi_k = n \frac{x_k^{\delta_4}}{t_x^{\delta_4}}$, which is sometimes referred as "optimal".

Strategy π ps—reg

Strategy π ps—reg

Research questions

Our hypothesis is that, as it strongly relies on the model, the strategy above is not robust.

We will compare π ps—reg with other four strategies.

- When ξ_0 holds and δ_2 and δ_4 are known, is, in fact, π ps—reg the "best" strategy?
- **②** How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?
- **3** When ξ_0 does not hold, is π ps—reg the "best" strategy?
- How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?

Strategy STSI—reg

We use again $\mathbf{x}_k = (1, x_k^{\delta_2})$ in the GREG-estimator.

The proxies $\tilde{E}_k \propto x_k^{\delta_4}$ are now partitioned, creating H strata. A Simple Random Sample of elements is selected in each stratum.

This strategy, STSI—reg, is often called model-based stratification.

- The stratum boundaries are obtained using the cum \sqrt{f} rule on $x_k^{\delta_4}$;
- The sample is allocated using Neyman allocation, i.e. $n_h = n \frac{N_h S_x \delta_4, U_h}{\sum_j N_j S_x \delta_4, U_i}$

Strategy STSI—reg

Strategy STSI—reg

Strategy STSI—HT

We use $\mathbf{x}_k = 0$ in the GREG-estimator (i.e. the HT-estimator).

The population is stratified with respect to $x_k^{\delta_2}$ and a Simple Random Sample of elements is selected in each stratum.

This strategy, STSI—HT, uses the auxiliary information only at the design stage. It will be considered as a benchmark.

- The stratum boundaries are obtained using the cum \sqrt{f} rule on $x_k^{\delta_2}$;
- The sample is allocated using Neyman allocation, i.e.

$$n_h = n \frac{N_h S_{x} \delta_{2, U_h}}{\sum_j N_j S_{x} \delta_{2, U_j}}$$

Strategy STSI—HT

Strategy STSI—HT

Let's assume that ξ_0 holds and δ_2 and δ_4 are known, but still we plan to use the post-stratified estimator.

As the estimator must explain the trend, the population is post-stratified with respect to $x_k^{\delta_2}$ in the same way as in STSI—HT.

A proxy for
$$|E_k|$$
 is $\tilde{E}_k = \delta_3^{1/2} \sqrt{\left(1 + \frac{2}{N_j}\right) x_k^{2\delta_4} + \frac{t_{\chi^2 \delta_4, U'_j}}{N_j^2}} = \delta_3^{1/2} v_k$.

The design is a π ps with $\pi_k \propto \tilde{E}_k$.

We decide to use the post-stratified estimator again in the same way as above.

The proxies $\tilde{E}_k \propto v_k$ are now partitioned, creating H strata. A Simple Random Sample of elements is selected in each stratum:

- The stratum boundaries are obtained using the cum \sqrt{f} rule on v_k ;
- The sample is allocated using Neymal allocation, i.e. $n_h = n \frac{N_h S_{v,U_h}}{\sum_i N_i S_{v,U_i}}$

Strategies

	Estimator		
Design	HT	Pos	Reg
STSI	1	2	4
πps		3	5

Simulation study under the correct model

- A finite population of size N was generated as follows.
- The auxiliary variable, x, is obtained as N realizations from a $\Gamma\left(\frac{4}{\gamma^2},12\gamma^2\right)$ plus one unit, where γ is the skewness.
- The study variable is generated as

$$Y_k = \delta_0 + \delta_1 x_k^{\delta_2} + \epsilon_k$$
 with $\epsilon_k \sim N\left(0, \delta_3 x_k^{2\delta_4}\right)$

- For each strategy, the variance of sampling n elements is computed.
- The procedure is repeated R = 5000 times.
- The number of strata/post-strata, H, is the same for every strategy.

The simulation study

- N = 5000
- n = 500
- $\gamma = 3, 12$
- H = 5
- $\delta_0 = 0$
- $\delta_1 = 1$
- $\delta_2 = \frac{3}{4}, \frac{4}{4}, \frac{5}{4}$
- δ_3 two levels in order to obtain $\rho(X, Y) = 0.65, 0.95$
- $\delta_4 = \frac{2}{4}, \frac{3}{4}, \frac{4}{4}$

$$\gamma = 3, \delta_2 = 1, \delta_4 = 0.5, \rho = 0.95$$

$$\gamma = 3, \delta_2 = 1, \delta_4 = 0.5, \rho = 0.95$$

$$\gamma = 3, \delta_2 = 1, \delta_4 = 0.5, \rho = 0.95$$

$$\gamma = 3, \delta_2 = 1, \delta_4 = 0.5, \rho = 0.95$$

$$\gamma = 3, \delta_2 = 1, \delta_4 = 0.5, \rho = 0.95$$

$$\gamma = 3, \delta_2 = 1, \delta_4 = 0.5, \rho = 0.95$$

$$\gamma = 3, \delta_2 = 0.75, \delta_4 = 0.5, \rho = 0.65$$

$$\gamma = 12, \delta_2 = 0.75, \delta_4 = 0.75, \rho = 0.95$$

$$\gamma = 12, \delta_2 = 0.75, \delta_4 = 1.00, \rho = 0.95$$

$$\gamma = 12, \delta_2 = 1.25, \delta_4 = 1.00, \rho = 0.65$$

Research questions

Our hypothesis is that, as it strongly relies on the model, the strategy above is not robust.

We will compare π ps—reg with other four strategies.

- When ξ_0 holds and δ_2 and δ_4 are known, is, in fact, π ps—reg the "best" strategy?
- ② How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?
- **3** When ξ_0 does not hold, is π ps—reg the "best" strategy?
- How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?

Research questions

Our hypothesis is that, as it strongly relies on the model, the strategy above is not robust.

We will compare π ps—reg with other four strategies.

- When ξ_0 holds and δ_2 and δ_4 are known, is, in fact, π ps—reg the "best" strategy? Not always!
- ② How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?
- **3** When ξ_0 does not hold, is π ps—reg the "best" strategy?
- How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?

Research questions

Our hypothesis is that, as it strongly relies on the model, the strategy above is not robust.

We will compare π ps—reg with other four strategies.

- When ξ_0 holds and δ_2 and δ_4 are known, is, in fact, π ps—reg the "best" strategy? Not always!
- ② How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?
- **3** When ξ_0 does not hold, is π ps—reg the "best" strategy? Not always!
- How does π ps—reg behave with respect to other strategies in terms of finite population characteristics?

Bibliography I

- Brewer, K.R.W. (1963). A Model of Systematic Sampling with Unequal Probabilities. Australian Journal of Statistics, 5, 5-13.
- Brewer, K.R.W. (2002). *Combined Survey Sampling Inference:* Weighing Basu's Elephants. London: Arnold.
- Cassel, C.M., Särndal, C. E. and Wretman, J. (1977). Foundations of Inference in Survey Sampling. New York: Wiley.
- Dalenius, T. and Hodges, J.L. (1959) *Minimum variance stratification*. Journal of the American Statistical Association, **54**, 88-101.

Bibliography II

- Godambe, V.P. (1955). A unified theory of sampling from finite populations. Journal of the Royal Statistical Society, Series B 17, 269-278.
- Hanif, M. and Brewer K. R. W. (1980). Sampling with Unequal Probabilities without Replacement: A Review. International Statistical Review 48, 317-335.
- Holmberg, A. and Swensson, B. (2001). On Pareto πps Sampling: Reflections on Unequal Probability Sampling Strategies. Theory of Stochastic Processes, **7(23)**, 142-155.
- Isaki, C.T. and Fuller, W.A. (1982) Survey design under the regression superpopulation model. Journal of the American Statistical Association 77, 89-96.

Bibliography III

- Kozak, M. and Wieczorkowski, R. (2005). πps Sampling versus Stratified Sampling? Comparison of Efficiency in Agricultural Surveys. Statistics in Transition, **7**, 5-12.
- Lanke, J. (1973). On UMV-estimators in Survey Sampling. Metrika **20**, 196 202.
- Rosén, B. (1997). On sampling with probability proportional to size. Journal of statistical planning and inference **62**, 159-191.
- Rosén, B. (2000a). Generalized Regression Estimation and Pareto πps . R&D Report 2000:5. Statistics Sweden.

Bibliography IV

- Rosén, B. (2000b). On inclusion probabilities for order πps sampling. Journal of statistical planning and inference **90**, 117-143.
- Särndal, C.E., Swensson, B. and Wretman, J. (1992). *Model Assisted Survey Sampling*. Springer.
- Tillé, Y. (2006). Sampling algorithms. Springer.
- Wright, R.L. (1983). Finite Population Sampling with Multivariate Auxiliary Information. Journal of the American Statistical Association, **78**, 879 884.

Thanks for your attention!

edgar.bueno@stat.su.se