
Coordinated sampling: the current state and the research

frontier

Alina Matei1 and Anton Grafström2

1University of Neuchâtel, Switzerland and 2Swedish University of Agricultural Sciences,

Umea, Sweden

ENBES workshop,
Statistics Netherlands (CBS), The Hague, The Netherlands

Alina Matei1 and Anton Grafström2 Coordinated sampling 1st March 2019 1 / 58



Overview

Framework.

Methods to coordinate samples.

Poisson sampling with permanent random numbers.

Methods to CP-samples and spatially balanced samples.

Advantages/disadvantages of the methods.
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Sampling over time

Consider a repeated survey over two time occasions 1 and 2.

The �nite population at time t ∈ {1, 2} is Ut . U1 and U2 overlap.

Samples st are selected from Ut , t ∈ {1, 2}.
Let πkt = P(k ∈ st), k ∈ Ut , t ∈ {1, 2}.
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Overview - positive coordination
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Overview - negative coordination
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Sample coordination

Sample coordination seeks to maximize/minimize the overlap between
samples drawn in repeated surveys or several surveys
(positive/negative coordination).

Main goals:

positive coordination: reduce the variance of an estimator of change,
reduce data collection costs;
negative coordination: diminish the response burden of the units that
have a risk of being selected for several surveys.

An important di�culty in sample coordination is due to changes in
population de�nition. Thus, births, deaths, or splits of units frequently
occur.
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Coordination methods

Sample coordination methods can be roughly divided into two
categories: Permanent Random Numbers (PRN) methods and
non-PRN methods
PRN methods: assign to each unit in the overall population a uniform
random number and use this number in all sample selections. The
coordination between samples is created based on the use of the same
permanent random number of a unit over di�erent surveys. For an
overview, see, for example Ernst (1999); Mach et al. (2006), and the
references therein. More recent, Nedyalkova et al.(2008), Nedyalkova
et al.(2009), Grafström and Matei (2015), Grafström and Matei
(2018).
non-PRN methods: Key�tz (1951), Kish and Scott (1971), Matei and
Tillé (2005), and methods based on mathematical programming (e.g.
Raj, 1968; Arthnari and Dodge, 1981; Causey et al. (1985); Ernst and
Ikeda, 1995; Ernst, 1996, 1998; Ernst and Paben, 2002; Mach et al.,
2006; Matei and Skinner (2009); Schiopu-Kratina et al., 2014).
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Framework

We consider the overall population of units:
U = {1, . . . , k, . . . ,N} = U1 ∪ U2. From this population we select
samples.

s12 = (s1, s2) is a bi-sample having the selection probability
p12 = p(s1, s2).

The marginal sampling designs for s1 and s2 are given by the
probabilities p1(s1) and p2(s2), respectively.

The overall sampling design is said to be co-ordinated if

p(s1, s2) 6= p1(s1)p2(s2)

(the two samples are not selected independently).

see Cotton and Hesse, 1992; Mach et al., 2006.
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Degree of coordination

πk1 = P(k ∈ s1), πk2 = P(k ∈ s2), π
1,2
k = P(k ∈ s1, k ∈ s2), k ∈ U.

The expected overlap between s1 and s2 is de�ned as

E (c) =
∑
k∈U

π1,2k .
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Fréchet bounds

Any bivariate distribution function H with marginal distribution functions F
and G satis�es

max(0,F (x) + G (y)− 1) ≤ H(x , y) ≤ min(F (x),G (y)).
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Theoretical bounds on unit level

∑
k∈U

max(0, πk1 + πk2 − 1) ≤ E (c) =
∑
k∈U

π1,2k ≤
∑
k∈U

min(πk1, πk2).

∑
k∈U min(πk1, πk2) is the absolute upper bound - AUB;∑
k∈U max(0, πk1 + πk2 − 1) is the absolute lower bound - ALB.

These bounds are usually used to quantify the performance of di�erent
sample coordination methods.

Yet, there are few methods in the literature capable to reach these
bounds.
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Poisson sampling design

It is an unequal probability sampling design with random sample size.

A Poisson sample s with πk = P(k ∈ s),
∑

k∈U πk = n is drawn as
follows:

generate u1, . . . , uk , . . . , uN ∼ U(0, 1) iid,

select k in s if
uk < πk = P(k ∈ s).
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Poisson sampling design with PRN

Positive coordination:

Generate generate u1, . . . , uk , . . . , uN ∼ U(0, 1) iid;

Sample s1 : select k in s1 if uk < πk1, πk1 = P(k ∈ s1);

Sample s2 : select k in s2 if uk < πk2, πk2 = P(k ∈ s2);

u1, . . . , uk . . . uN are called permanent random numbers (PRN)
(Brewer et al., 1972).
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Poisson sampling design with PRN

Negative coordination:

Generate generate u1, . . . , uk , . . . , uN ∼ U(0, 1) iid;

Sample s1 : select k in s1 if uk < πk1, πk1 = P(k ∈ s1);

Sample s2 : select k in s2 if 1− uk < πk2, πk2 = P(k ∈ s2);
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Poisson sampling with PRN

Good point: the bounds AUB and ALB are achieved in positive and
negative coordination, respectively

in positive coordination we achieve the AUB:

E (c) =
∑
k∈U

π1,2k =
∑
k∈U

min(πk1, πk2).

in negative coordination we achieve the ALB:

E (c) =
∑
k∈U

π1,2k =
∑
k∈U

max(0, πk1 + πk2 − 1).

Bad point: the sample size is random and increases the variance of the
estimates.
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Our goals and constraints

Maximize/minimize the expected overlap,

Preserve (as much as possible) the sampling design in each time
occasion,

Use of unequal probability sampling designs (with �xed sample size).

Presentation based on Grafström and Matei (2015) and Grafström and
Matei (2018).
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Conditional Poisson sampling design

Grafström and Matei (2015)

Conditional Poisson (CP) sampling is a modi�cation of the classical
Poisson sampling that produces a �xed-size sample, and has the
maximum entropy property subject to given inclusion probabilities.

Entropy of a generic sampling design p̃

I (p̃) = −
∑
s∈S

p̃(s) log(p̃(s)),

where S = {s|p̃(s) > 0} is the support of p̃.
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Entropy

1 The entropy is a measure of sample randomness: higher entropy of the
sampling design implies more randomness in sample selection.

2 High entropy is important for variance estimation. Tillé and Haziza
(2010) noted that: `The concept of entropy is useful in the context of
variance estimation. When a sampling design has a high entropy, it is
possible to obtain approximation of the second-order inclusion
probabilities in terms of the �rst-order inclusion probabilities, which
simpli�es considerably the problem of variance estimation in the
context of unequal probability sampling.'

3 `Higher entropy of a design results in a faster convergence to a normal
distribution of the Horvitz-Thompson estimator' (Berger, 1998).
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CP-sampling

Consider the selection of a generic CP-sample of �xed size n.

Di�erent implementations exist.

Let pk be the parameters for Poisson sampling.

Rejective implementation

Draw Poisson samples (with parameters pk) until we get a sample of size n.

Usually it is assumed that
∑N

k=1 pk = n because it maximizes the
probability of obtaining samples of size n.

The assumption
∑N

k=1 pk = n is, however, not restrictive.
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Inclusion probabilities of CP-sampling from pk

When implementing CP-sampling of size n with parameters pk ,∑N
k=1 pk = n, the true inclusion probabilities will only approximately

equal the pks.

Let π
CP(n)
k denote the achieved inclusion probabilities for CP-sampling

of size n. The formula is (see Chen et al., 1994, Deville, 2000)

π
CP(n)
k = n

pk
(1−pk ) ·

(
1− πCP(n−1)

k

)
∑N

`=1
p`

(1−p`) ·
(
1− πCP(n−1)

`

) , (1)

and the start is given by π
CP(0)
k = 0, k = 1, 2, . . . ,N.

Similarly, the second-order inclusion probabilities for CP-sampling can
be calculated recursively.
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pk from the inclusion probabilities πk of CPS

It is also possible to adjust the pks to obtain desired inclusion
probabilities (Dupacová, 1979; Chen et al., 1994; Deville, 2000; Aires,
2000; Tillé, 2006).

Let πk be the inclusion probabilities for CP-sampling.

Let π
CP(n,t)
k be the inclusion probabilities derived by Equation (1) with

the parameters ptk , where t denotes the current iteration of the
algorithm, and let p0k = πk . Then, practically, only a few iterations of

ptk = pt−1k + (πk − π
CP(n,t−1)
k ), (2)

is enough to �nd parameters ptk that yield inclusion probabilities πk .
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Sequential implementation of CP-sampling for a generic s

see Chen and Liu (1997); Traat et al. (2004); Tillé (2006)

Let pk the parameters associated to Poisson sampling design, and∑
k∈U pk = n, where n is the sample size.

Let Ik ∼ Bin(1, pk), k = 1, 2, . . . ,N be independent random variables.

A unit k is selected in s with an updated probability π
(k−1)
k :

include unit k in s if uk ≤ π
(k−1)
k .

The updated probabilities is calculated as

π
(k−1)
k = P (Ik = 1 |Sk = n − nk−1 ) ,

where Sk =
∑N

`=k I` and nk =
∑k

`=1 I`, n0 = 0.
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Positive coordination

1 Given πk1 and πk2, k = 1, 2, ...,N, use Equation (2) to �nd the
corresponding Poisson parameters p1k and p2k , respectively.

2 To coordinate two CP-samples, apply the list-sequential method with
the parameters p1k and p2k and the permanent random numbers uk in
each selection.
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Negative coordination

For negative coordination of 2 samples, antithetic random numbers
u∗k = 1− uk can be used in the second selection.

For β > 2 samples, new random numbers can be constructed by
shifting the PRN an amount α to the right before the selection of
each sample di�erent from the �rst one: uk + α, or (uk + α) mod 1,
where a possible choice of α = 1/β (see Ohlsson, 2000).
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Coordination performance

Five di�erent sampling schemes:

a) two CP-samples are drawn independently (IND) (using the rejective
method for both);

b) two Poisson samples are drawn using Poisson sampling (POI) with
PRN;

c) two Pareto samples are drawn using Pareto sampling (PAR) with PRN;

d) two CP-samples are drawn using the list-sequential method (SEQ)
with PRN;

e) the �rst sample is a CP one drawn using the rejective method; the
second one is selected using the rejective method with updated
parameters (it is an adaptive sampling design for the �rst one, in order
to reach AUB or ALB, but the second sampling design is not exactly
CPS). We call this method the mixed one (MIX).
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Pareto sampling

see Rosén, 1997a,b; Saavedra, 1995

To all units in the population independent random numbers
uk ∼ U(0, 1) are permanently assigned.

On the �rst occasion, the n1 units having the smallest values of
H(uk)/H(πk1) are selected as a sample of size n1.

On the second occasion, the n2 units having the smallest values of
H(uk)/H(πk2) are selected as a sample of size n2.

The sample coordination is assured by the use of the same uk in both
occasions.

The shape function is H(x) = x/(1− x).
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MC measures

the Monte Carlo expected overlap

Esim(c) =
1

m

m∑
`=1

c1,2` ,

where m = 105 is the number of runs, c1,2` = |s1` ∩ s2`|, and s1`, s2`,
are the samples drawn in the `th run of the simulation.

The Monte Carlo variance of the overlap

Vsim(c) =
1

m − 1

m∑
`=1

(c1,2` − Esim(c))
2.
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Some results - positive coordination

Table: Monte Carlo expected overlap and variance based on 105 simulation runs,
MU284 dynamic population � stratum 2 from the MU284 population, where 50%
of the units are new in the second occasion (births), and 50% of the units change
the stratum (deaths), N = 72, n1 = 10, n2 = 6.

Method Esim(c) Vsim(c)

IND 1.55 0.78
POI 2.79 1.94
PAR 2.76 1.04

CP-SEQ 2.55 1.00
CP-MIX 2.79 0.99

AUB 2.79

πk1 are computed using the variable P75 (population in 1975 in thousands),
and πk2 using the variable P85 (population in 1985 in thousands).
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Coordination of spatially balanced sampling
Grafström and Matei (2018)
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Spatial units

Geographical position of statistical units is important e.g. in
agricultural and environmental surveys because the units themselves
are de�ned using spatial criteria;

Also many sampling frames contains information regarding the exact
or estimated geographical position of each record;

To simplify the problem, spatial units are arti�cially de�ned over a
domain partitioned into a number of predetermined regularly, or
irregularly, shaped sets of spatial objects, leading to the use of the
traditional sampling de�nition for �nite populations;

Intuitively, contiguous units can provide similar data, and more
information could be obtained if the random sample avoids pairs of
contiguous units. Thus, the selected units should be spread in the
space (spatially balanced sampling).

Spatially balanced designs ensure there is spatial coverage of the entire
survey area.
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Figure: Baltimore data: house sales prices; available in R : `spData' package
(Bivand, Nowosad, Lovelace, and all., 2018 )
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Voronoi polytopes
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Figure: Left hand: a sample selected with a spatially balanced design; Right hand
a sample selected with a non spatially balanced design.
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Voronoi polytopes

They are used to measure the level of spatial balance (or spread) with
respect to the inclusion probabilities.

A polytope Pi is constructed for each unit i ∈ s, and Pi includes all
population units closer to unit i than to any other sample unit j ∈ s, j 6= i .

Optimally, each polytope should have a probability mass that is equal to 1.

A measure of spatial balance of a realised sample s of size n is (see Stevens
and Olsen, 2004)

B =
1

n

∑
i∈s

(vi − 1)2 ,

where vi is the sum of the inclusion probabilities of the units in Pi .

The expected value of B under repeated sampling is a measure of how well a
design succeeds in selecting spatially balanced samples. The smaller the
value of E (B), the better the spread of the selected samples.
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Figure: Voronoi polytopes for the sample shown in the previous left panel. The
blue points are the selected ones.
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Two spatial sampling schemes

1 local pivotal method (LPM) (Grafström et al., 2012), modi�cation of
the pivotal method (Deville and Tillé, 1998),

2 spatially correlated Poisson sampling (SCPS) (Grafström, 2012),
modi�cation of correlated Poisson sampling (Bondesson and
Thorburn, 2008).

Both sampling schemes are �xed-size πps designs and give spatially
balanced samples.
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Why is important to coordinate spatial samples?

environmental monitoring: the sample is continuously updated, e.g.
yearly, to match distributions of auxiliary variables from remote
sensing (to give good estimates of current state), and where a high
positive coordination would guarantee good estimates of change.

o�cial national business registers contain spatial coordinates of
business units (e.g. US Census Bureau's Longitudinal Business
Database, the Swiss GeoStat, the Italian Statistical Archive of Active
Enterprisers) (Dickson et al., 2014).
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Local pivotal method for a generic s
Let π = (π1, π2, ..., πN) with

∑
i∈U πi = n. The vector π is successively

updated to become a vector with N − n zeros and n ones, where the ones
indicate selected units.

In each step, a pair of units (i , j) is chosen to compete. The unit i is chosen
randomly, and the competitor j is the nearest neighbor to i .

The winner takes as much probability mass as possible from the loser, so the
winner ends up with πW = min(1, πi +πj); the loser gets πL = πi +πj −πW .

The competition rule is

(πi , πj) :=

{
(πW , πL) with probability (πW − πj)/(πW − πL)
(πL, πW ) with probability (πW − πi )/(πW − πL)

.

The �nal outcome is decided for at least one unit at each updating, so the
procedure has at most N steps. A unit that has received a probability that is
0 or 1 must not be chosen to compete again.

The design succeeds in avoiding selection of nearby units, and hence forces
the sample to be well spread (spatially balanced).
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Competition rule

(πi , πj) :=

{
(πW , πL) with probability (πW − πj)/(πW − πL)
(πL, πW ) with probability (πW − πi )/(πW − πL)

.

it means

generate iid uij ∼ U(0, 1),

if uij < (πW − πj)/(πW − πL) then (πi , πj) := (πW , πL), else
(πi , πj) := (πL, πW ).
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First method - positive coordination

It uses the concept of permanent random numbers and LPM.

Samples s1 and s2 are drawn from U as follows:

a permanent random number uij∼ U(0, 1) is associated to each pair
(i , j) of units in the overall population (and it will be used in all
coordination process), all uij are iid.
s1 is drawn using LPM with uij (see competition rule ) and the order of
pairs (i , j) is conserved,
s2 is drawn using LPM with uij and the pairs (i , j) are considered in the
same order as appear in the selection of s1 (see selection ). If the size of
s2 is not achieved, the method is applied as shown previously, using
new pairs of units.

Remark: the negative coordination is similar using for s2 the numbers
1− uij .
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Correlated Poisson sampling for a generic s

list sequential method, that is, it starts at unit 1, and once the
sampling outcome is decided for that unit, it continues with unit 2 and
so on. It does not revisit any unit, and once a sampling outcome has
been decided, the selection probabilities for the remaining units are
updated.

Let πi , i = 1, . . . ,N, be the prescribed inclusion probabilities and take

π
(0)
i = πi , i = 1, . . . ,N. Unit k is then selected is s with probability

π
(k−1)
k , and we set Ik = 1 if it is included in s and 0 otherwise.

The selection probabilities for the units i = k + 1, . . . ,N are then
updated according to

π
(k)
i = π

(k−1)
i − (Ik − π

(k−1)
k )w

(i)
k .

We have E (π
(k−1)
k ) = πk , for all k ∈ U.
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Correlated Poisson sampling for a generic s

In order for 0 ≤ π(k−1)i ≤ 1, i = k , k + 1, ...,N, to hold:

−min

(
1− π(k−1)i

1− π(k−1)k

,
π
(k−1)
i

π
(k−1)
k

)
≤ w

(i)
k ≤ min

(
π
(k−1)
i

1− π(k−1)k

,
1− π(k−1)i

π
(k−1)
k

)

Remark: If
∑

k∈U πk = n, to obtain a �xed sample size we should
have for each k ∈ U (Bondesson and Thorburn, 2008)∑

i=k+1,...,N

w
(i)
k = 1.

Alina Matei1 and Anton Grafström2 Coordinated sampling 1st March 2019 42 / 58



Maximal weight strategy - spatial correlated Poisson

sampling

To avoid clustering of similar units and to obtain well-spread samples,

the weights w
(i)
k are chosen such that unit k gives maximal weight to

the unit closest to k in distance, among the units k + 1, . . . ,N
(Grafström, 2012).

π
(k)
i = π

(k−1)
i − (Ik − π

(k−1)
k )w

(i)
k , i = k + 1, . . . ,N.
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Selection

Unit k is then included in s with probability π
(k−1)
k it means

generate iid uk ∼ U(0, 1),

if uk < π
(k−1)
k then Ik = 1 else Ik = 0.
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Second method - positive coordination

It uses the concept of permanent random numbers and SCPS.

Samples s1 and s2 are drawn from U as follows:

a permanent random number ui∼ U(0, 1) is associated to each unit
i ∈ U, ui are iid.
s1 is drawn using SCPS with ui (see selection ),
s2 is drawn using SCPS with ui .

Remark: the negative coordination is similar using for s2 the numbers
1− ui .
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Two new methods: mixing SCPS and Poisson sampling 1

The new strategies are intended to provide a good compromise
between the degrees of spatial balance and coordination.

We denote the resulting family of designs Transformed Spatially
Correlated Poisson Sampling (TSCPS).

The coordination for them is similar to the coordination of SCPS.
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Two new methods: mixing SCPS and Poisson sampling 2

First strategy (TSCPS 1): modify SCPS by multiplying the maximal
weight by a given scalar α, 0 ≤ α ≤ 1.

Example:

Say the maximal weights for the three nearest neighbors of a unit k in
SCPS (with maximal weights) are 0.7, 0.3, 0.
The new modi�ed version would, with α = 0.5, distribute the weights
0.35, 0.25, 0.1.

Second strategy (TSCPS 2) is achieved by limiting the weights that a
unit distributes to sum to a �xed scalar α, 0 ≤ α ≤ 1.

Example:

Say the maximal weights for the three nearest neighbors of a unit k in
SCPS (with maximal weights) are 0.7, 0.3, 0.
The new modi�ed version would, with α = 0.5, distribute 0.5, 0, 0.
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Two new methods: mixing between SCPS and Poisson

sampling 3

For both TSCPS 1 and 2 with α = 0, we get Poisson sampling and
with α = 1 we get SCPS with maximal weights.

Maximum coordination, worst spatial balance and highest variance of
sample size for α = 0, and best spatial balance and guaranteed �xed
sample size for α = 1 while level of coordination will be to some
extent worse.

Both TSCPS 1 and 2 o�er the possibility to make a trade-o� between
the Poisson and SCPS designs. Degree of spatial balance and
coordination, as well as variance of achieved sample size depend on
the parameter α.

Drawback: for any value of α < 1, the weights w
(i)
k given by the unit k

to units i = k + 1, . . . ,N do not sum up to 1 any more. Consequently,
the new sampling designs do not any more provide �xed sample sizes.
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Coordination performance

Di�erent sampling schemes:

two Poisson samples are drawn independently and with PRN,
respectively;

two LPM-samples are drawn independently;

two samples are drawn using the LPM with PRN;

two SCPS-samples are drawn independently;

two samples are drawn using the SCPS with PRN;

two samples are drawn using the TSCPS 1 with PRN and di�erent
values of α;

two samples are drawn using the TSCPS 2 with PRN and di�erent
values of α.
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MC measures

the Monte Carlo expected overlap

Esim(c) =
1

m

m∑
`=1

c1,2` ,

where m = 105 is the number of runs, c1,2` = |s1` ∩ s2`|, and s1`, s2`,
are the samples drawn in the `th run of the simulation.

The Monte Carlo variance of the overlap

Vsim(c) =
1

m − 1

m∑
`=1

(c1,2` − Esim(c))
2.
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Figure: Baltimore data: house sales prices; available in R : `spData' package
(Bivand, Nowosad, Lovelace, and all., 2018 )
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Table: Baltimore data, N = 211, expected sample sizes n1 = 25, n2 = 25, πi1 are
proportional to the variable AGE and πi2 to AGE+5. The distance matrix uses
real data. The values of AUB and ALB are 24.20 and 0.10, respectively.

Method
independent positive negative

Esim(c) Vsim(c) Esim(c) Vsim(c) Esim(c) Vsim(c)
Poisson 4.08 3.93 24.20 20.63 0.10 0.09
LPM 4.09 3.15 21.50 2.86 1.76 1.51
SCPS 4.01 3.22 22.20 3.14 0.76 0.70
TSCPS 1
α = 0.25 4.05 3.02 23.10 2.60 0.26 0.26
α = 0.50 4.06 3.06 22.50 2.93 0.08 0.43
α = 0.75 4.05 3.22 22.30 3.10 0.08 0.55
TSCPS 2
α = 0.25 4.07 3.56 23.70 11.75 0.10 0.09
α = 0.50 4.07 3.37 23.20 6.35 0.11 0.27
α = 0.75 4.04 3.31 22.70 3.84 0.09 0.52
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Application to Swiss establishments

The data that we used was collected by the Swiss Federal Statistical
O�ce.

It contains census data from 2013 and 2015 on Swiss establishments.

Data for all establishments are aggregated at the hectare level. The
geographical coordinates are proper to each hectare, and not to
establishments. Each hectare can contain several establishments. The
statistical unit was in this application a hectare, and not an
establishment.

We considered only hectares containing establishments from the
economic activity 1 (agriculture, hunting, forestry, �sheries and
aquaculture), and having in total at least 3 full-time equivalent
employees.

The years 2013 (with 7057 units) and 2015 (7104 units) were
considered the two time occasions. The overall population was of size
N = 9478. The di�erence in the sizes between the two time occasions
was due to the 2374 deaths and 2421 births in 2015 compared to 2013.

Alina Matei1 and Anton Grafström2 Coordinated sampling 1st March 2019 53 / 58



Coordination purposes

The data can be used with two main purposes:

The location of each establishment in Switzerland has been geocoded
since 1995. The register of establishments contains their geographical
coordinates. Surveys are made to complete some missing information
in this register. To achieve this, the Swiss Federal Statistical O�ce
conducted such a survey in 2014. A positive coordination can be
applied for example to check the quality of the the completed
information from a time occasion to another one.

Negative coordination can be applied to reduce the response burden of
the establishments selected in several surveys. If the aggregated data
are used, the hectares can be seen as primary selected units, while the
establishments inside them as secondary selected units.
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Figure: Swiss establishments aggregated data. Spatial distribution of the units in
the overall population based on the census in 2013 and 2015.
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Table: Swiss establishments aggregated data.
N = 9478, n1 = 1000, n2 = 800,AUB = 538.022,ALB = 45.908. Realised sample
sizes, overlap between s1 and s2 in both types of coordination, and the B measure
for s1.

Design size of s1 Positive coord. Negative coord. Bs1

size of s2 overlap size of s2 overlap

Poisson 1010 840 560 779 46 0.387
LPM 1000 800 270 800 93 0.161
SCPS 1000 800 329 800 70 0.151
TSCPS 1
α = 0.25 999 799 459 800 64 0.178
α = 0.50 1000 799 420 800 66 0.217
α = 0.75 1000 800 366 800 67 0.178
TSCPS 2
α = 0.25 1012 830 469 808 49 0.275
α = 0.50 1020 828 409 799 58 0.194
α = 0.75 1010 816 377 797 66 0.153
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Conclusions

Methods based on permanent random numbers give partial but
important solutions to real-life problems. Yet, there is no perfect
method that can be applied in all circumstances.

It is important to control the sampling design at each occasion in
repeated surveys. If the goal is to maximize/minimize the expected
overlap, near-optimal designs can be accepted (see MIX for
CP-samples and TSCPS1 and TSCPS2 for spatial balanced samples).

From the research point of view, it is necessary to develop coordinated
sampling methods to include advances made in the domain of
one-sample selection (e.g. balanced sampling).
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