Giorgia Simeoni
Directorate for Methodology and Statistical Process Design
Istat

ESTP Training Course “Enterprise Architecture (EA) for Official Statistics”
Rome, 18 – 21 October 2022

It provides a standard framework and harmonised terminology to help statistical organisations to modernise their statistical production processes, as well as to share methods and components. The GSBPM can also be used for integrating data and metadata standards, as a template for process documentation, for harmonising statistical computing infrastructures, and to provide a framework for process quality assessment and improvement.” (GSBPM 5.1)
GSBPM Background

- Developed by the Joint UNECE/Eurostat/OECD Work Session on Statistical Metadata (METIS)

- First version released on April 2009 (4.0), then revised twice:
  - in 2013 (version 5.0 released in December 2013): to incorporate feedback based on practical implementation and to improve consistency with Generic Statistical Information Model (GSIM)
  - In 2018-9 (version 5.1 released in January 2019): to incorporate feedback based on further practical implementation and to improve consistency with other HLG-MOS models, the GSIM and the Generic Activity Model for Statistical Organisations (GAMSO).

- Current version GSBPM 5.1

https://statswiki.unece.org/display/GSBPM/Generic+Statistical+Business+Process+Model
GSBPM Background

- Widely adopted by the global official statistics community
- A cornerstone of the UNECE High-Level Group for the Modernisation of Official Statistics (HLG-MOS) vision and strategy for standards-based modernisation
- Now Managed by the “Supporting Standards Group”, under the HLG
- GSBPM has been approved as ESS Standard by the ESSC in February 2017
UNECE High-Level Group for the Modernisation of Official Statistics

- UNECE is the United Nations Economic Commission for Europe. It is one of five regional commissions of the United Nations.

- **High-Level Group for the Modernisation of Official Statistics (HLG-MOS)** setup in 2010 under the Conference of European Statisticians (CES).

- HLG-MOS is composed by the Chief statistician (Presidents or General Directors) of National and International Statistical Organisations.

- Since 2016 the community is branded as:
  - Australia
  - Canada
  - Ireland
  - Italy
  - Mexico
  - Netherlands
  - New Zealand
  - Poland
  - Republic of Korea
  - Slovenia
  - United Kingdom
  - Eurostat
  - OECD
  - UNECE

![modernstats](image)
**UNECE HLG-MOS Mission**

**Mission**: The HLG-MOS is a group of committed Chief Statisticians actively steering the modernisation of statistical organisations. Their mission is to work collaboratively to identify trends, threats, and opportunities in modernising statistical organisations. It provides a common platform for experts to develop solutions in a flexible and agile way. It is a voluntary collaboration of willing and able.

HLG-MOS oversees the activities of «stable» modernisation groups and «annual» modernisation projects.
Supporting Standards

It is one of the HLG- MOS modernisation groups. The goal of the group is to find ways how to develop, enhance, integrate, promote, support and facilitate implementation of the range of standards needed for statistical modernisation.

It has the operational responsibility for the maintenance and development of:

- **GAMSO** - [Generic Activity Model for Statistical Organizations](#)
- **GSBPM** - [Generic Statistical Business Process Model](#)
- **GSIM** - [Generic Statistical Information Model](#)

And the documentation of:

- **CSPA** - [Common Statistical Production Archiecture](#)
GSBPM

What is GSBPM?
GSBPM is a generic process model for production of official statistics. It consists of 8 phases and 44 sub-processes.

More than 40 NSOs and international statistical organizations are using GSBPM

GSBPM is a living model that evolves to reflect changing business landscape. The latest version came out in 2019

How does GSBPM help statistical organizations?

Provides a structure for documentation of statistical processes

Facilitates sharing statistical methods and software

Provides a framework for quality assessment

Helps to measure operational cost and system performance

For more details, visit UNECE GSBPM Wikis: https://statswiki.unece.org/display/GSBPM/
A statistical business process is a collection of related and structured activities and tasks to convert input data into statistical information.

5.2. Classify and code - This sub-process classifies and codes the input data. For example, automatic (or clerical) coding routines may assign numeric codes to text responses according to a pre-determined statistical classification to facilitate data capture and processing. Some questions have coded response categories on the questionnaires or administrative source of data, others are coded after collection using an automated process (which may apply machine learning techniques) or an interactive, manual process.
Main features

• “The GSBPM is intended to apply to all activities undertaken by producers of official statistics, at both the national and international levels, which result in data outputs. ”
• Organised in 3 levels with increasing level of detail
• Detailed description of what is included in each sub-process
• Extremely flexible:
  • Not all the subprocesses should be performed
  • The order of subprocesses can be different from the one presented
  • It is possible to repeat some steps more than once
  • It can be considered a matrix
Example of workflow in GSBPM

Overarching Processes

- Specify needs
  - Identify needs
  - Confirm
  - Enter output data
  - Identify inputs
  - 1.5 Check data availability
  - 1.6 Prepare and submit business case

- Design
  - Define datasets
  - Design database
  - Design documents

- Build
  - Reuse or build statistical components
  - Reuse or build dissemination components
  - Configure workflows
  - Test production systems
  - Test statistical business process
  - Finalise production systems

- Collect
  - Create and load data
  - Set up operation
  - Run operation
  - Finalise operation

- Process
  - 5.1 Integrate data
  - Classify data
  - Review and update
  - Extract inputs
  - Derive variables and weights

- Analyse
  - Produce final data
  - Value inputs
  - Interpret and explain
  - Manage output of dissemination
  - Finalise inputs

- Disseminate
  - Publish
  - Update dissemination packages
  - Manage dissemination processes

- Evaluate
  - 8.1 Gather evaluation inputs
  - 8.2 Conduct evaluation
  - 8.3 Agree an action plan

---

Eurostat
Overarching processes

Processes with a strong statistical component that apply throughout the eight phases are included in GSBPM as Overarching processes. They are:

- Quality management
- Metadata management
- Data management
- Process data management
- Knowledge management
- Provider management

Activities that are carried out at the level of the organisation to support the statistical production are included in the GAMSO
GAMSO v.1.2

The Generic Activity Model for Statistical Organisations (GAMSO) describes and defines the activities that take place within a typical organisation that produces official statistics. It extends and complements GSBPM by adding additional activities needed to support statistical production.
The Generic Statistical Business Process Model

Overarching Processes

Specify needs:
1.1 Identify needs
1.2 Consult and confirm needs
1.3 Establish output objectives
1.4 Identify concepts
1.5 Check data availability
1.6 Prepare and submit business case

Design:
2.1 Design outputs
2.2 Design variable descriptions
2.3 Design collection
2.4 Design frame and sample
2.5 Design processing and analysis
2.6 Design production systems and workflow

Build:
3.1 Reuse or build collection instruments
3.2 Reuse or build processing and analysis components
3.3 Reuse or build dissemination components
3.4 Configure workflows
3.5 Test production systems
3.6 Test statistical business process
3.7 Finalise production systems

Collect:
4.1 Create frame and select sample
4.2 Set up collection
4.3 Run collection
4.4 Finalise collection

Process:
5.1 Integrate data
5.2 Classify and code
5.3 Review and validate
5.4 Edit and impute
5.5 Derive new variables and units
5.6 Calculate weights
5.7 Calculate aggregates
5.8 Finalise data files

Analyse:
6.1 Prepare draft outputs
6.2 Validate outputs
6.3 Interpret and explain outputs
6.4 Apply disclosure control
6.5 Finalise outputs

Disseminate:
7.1 Update output systems
7.2 Produce dissemination products
7.3 Manage release of dissemination products
7.4 Promote dissemination products
7.5 Manage user support

Evaluate:
8.1 Gather evaluation inputs
8.2 Conduct evaluation
8.3 Agree an action plan

Planning

Realisation

Assessment
GSBPM 5.1

Design

Evaluate

Change work phases

Ongoing work phases

Build

Disseminate

Analyse

Process

Collect

Specific needs
The planning sub-processes

- Dialog with users,
- Identification of needs (new or additional),
- Definition of high level solution,
- Get approval from senior management
The planning sub-processes

**Design**

- Definition of all methods and tools that will be used in the realisation of the statistical process

**Build**

- Set up and test of all methods and tools defined in the Design phase
The realisation sub-processes

Collect

4.1 Create frame and select sample
4.2 Set up collection
4.3 Run collection
4.4 Finalise collection

Process

5.1 Integrate data
5.2 Classify and code
5.3 Review and validate
5.4 Edit and impute
5.5 Derive new variables and units
5.6 Calculate weights
5.7 Calculate aggregates
5.8 Finalise data files

- The actual data acquisition, whatever the source or the method used. Data entry is included in «Finalise collection»

- The traditional phases of data treatment till the macrodata estimates are produced
The realisation sub-processes

**Analyse**

- 6.1 Prepare draft outputs
- 6.2 Validate outputs
- 6.3 Interpret and explain outputs
- 6.4 Apply disclosure control
- 6.5 Finalise outputs

- It includes the production of complex statistics (e.g. indices), macrodata validation, confidentiality treatment

**Disseminate**

- 7.1 Update output systems
- 7.2 Produce dissemination products
- 7.3 Manage release of dissemination products
- 7.4 Promote dissemination products
- 7.5 Manage user support

- The release of statistical outputs to users
The Assessment sub-process

- The quality evaluation done at the end of a specific edition of a statistical business process
Main overarching processes

**Quality Management**

- The overarching process on Quality represents quality assurance system implemented across the business process.
- Quality at an institutional level is considered in the GAMSO.

**Metadata Management**

- Metadata are present in every phase, either created, updated or carried forward from a previous phase or reused from another business process.
- When metadata management is considered at corporate or strategic level it should be considered in the framework of the GAMSO.

**Data Management**
Uses of GSBPM

- Standardisation of terminology in international context
- Support to statistical process documentation
- Analyse processes in order to identify common subprocesses
- Make inventory of available IT tools and application to rationalise and identify gaps
- Make inventory of available methodological tools to rationalise and identify gaps
- Reference model to support audit and self assessment procedures
- ...
Example 1. Business Process Model at Statistics Sweden

Evaluate and feed back

1. Specify needs
2. Design and plan
3. Build and test
4. Collect
5. Process
6. Analyse
7. Disseminate and communicate

Support and infrastructure

1. Identify information needs and availability
2. Design end product
3. Build collection instrument
4. Generate frame and register population
5. Classify and code microdata
6. Produce statistics
7. Prepare dissemination

1. Identify customers
2. Design frame, register population and sample
3. Build and adapt tools
4. Select sample
5. Edit microdata
6. Edit macrodata
7. Compile end product

1. Establish customer contact
2. Design data collection
3. Build workflow
4. Set up data collection
5. Impute for nonresponse
6. Carry out disclosure control
7. Disseminate end product to customer

1. Confirm information needs
2. Design processing
3. Test collection instruments
4. Run data collection
5. Complement microdata
6. Finalise observation register
7. Communicate end product

1. Negotiate and contract
2. Design analysis
3. Test tools and workflow
4. Transfer and store data electronically
5. Calculate weights
6. Interpret and explain
7. Dispose and preserve

1. Design dissemination and communication
2. Conduct pilot study
3. Initiate workflow
4. Finalise outputs for dissemination

http://www1.unece.org/stat/platform/display/GSBPM/Implementing+the+GSBPM
Example 2. Excel sheet for process/survey documentation

<table>
<thead>
<tr>
<th>#</th>
<th>GSBPM description</th>
<th>Next step in the process</th>
<th>Department / person responsible</th>
<th>Roles / persons / units involved</th>
<th>Dates / frequency</th>
<th>Statistical methods used</th>
<th>Quality control</th>
<th>Quality indicator(s)</th>
<th>Quality Dimension</th>
<th>Suggestions for improvement</th>
<th>Standards used in the step</th>
<th>Capabilities needed</th>
<th>IT components / software / Shared services</th>
<th>Infrastructure needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Specify needs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1. Identify needs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2. Consult and confirm needs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3. Establish output objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4. Identify concepts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5. Check data availability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6. Prepare and submit business case</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2. Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1. Design outputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2. Design variable descriptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3. Design collection</td>
<td></td>
</tr>
</tbody>
</table>

[https://statswiki.unece.org/download/attachments/185794796/GSBPM%20for%20surveys%20documentation%20v2.xlsx?version=1&modificationDate=1571915503042&api=v2](https://statswiki.unece.org/download/attachments/185794796/GSBPM%20for%20surveys%20documentation%20v2.xlsx?version=1&modificationDate=1571915503042&api=v2)
Example 3. ABS Prices processes mapped to GSBPM (V4.0)
Example 4. Istat repository of methods and tools organised by GSBPM phases

The Repository of the methods and IT tools for statistical production contains:

- statistical methods
- generalized IT tools

validated and used at Istat for the production of statistical outputs.

The Repository is organized by phases of the statistical production process, in accordance with the Generic Statistical Business Process Model (GSBPM) Version 5.0.

PHASES OF THE PROCESS

1. DESIGN > METHODS | TOOLS
2. COLLECT > METHODS | TOOLS
3. PROCESS > METHODS | TOOLS
4. ANALYSE > METHODS | TOOLS

The phases of the production process are the “gates” of access to information and specific materials. Only the phases Design, Collect, Process, Analyse, i.e., phases for which methods and tools are currently available, are taken into account.

The PHASES pages contain the most important information about the sub-processes within the selected phase.

Implementing GSBPM

GSBPM can be applied in several ways
- Adopting it as it is to document statistical processes
- Personalising it for the needs of the Institute
- As a reference for metadata-driven system that should process data
- To rationalize tools and methods
- To map activities and assign responsibilities
- ...
Implementation steps

Some steps should be conducted sequentially other could be in parallel

- Define the contents: sub-process description, input, output, workflow, tool, need of subtasks... (see excel file). Test contents and refine.
- Decide the governance: who does what? First implementation/maintenance. Training. Need for coordination
- Develop the tool: complexity of the tool is connected with objectives
- Start implementation: start collecting information
Quality indicators for GSBPM

• A wide set of quality indicators (partly qualitative and partly quantitative) has been mapped to each sub-process of GSBPM version 5.0 with the aim of expanding the quality management layer for the GSBPM

• UNECE (2017) Quality Indicators for the Generic Statistical Business Process Model (GSBPM) - For Statistics derived from Surveys and Administrative Data Sources. Version 2.0 October 2017

Quality indicators for GSBPM

• Generic indicators as GSBPM is;
• Consistent with existing quality assurance frameworks;
• No formulas, only descriptions or explanations;
• Quantitative indicators whenever possible;
• Qualitative indicators in the form of yes/no or large/medium/low when appropriate;
• Map indicators to the phase they measure even if they might be calculated at a later stage;
• Allow for a certain degree of redundancy by mentioning the same indicators in different phases or sub-processes

Personalisation of the quality indicators left to NSIs
The (UN) National Quality Assurance Framework dimensions – NQAF (2012) were taken as reference for relating Quality Indicators to the corresponding quality dimension but mapping to the ES *Code of Practice* was indicated only in case of discrepancies.
<table>
<thead>
<tr>
<th>Quality Dimension</th>
<th>Indicator</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soundness of implementation</td>
<td>Has the questionnaire been tested using appropriate methods (e.g. questionnaire pre-test, pilot in real situation, in depth interviews, focus groups, interviewer support,…)?</td>
<td>Corresponds to the appropriate statistical procedures principle in the ES Code of Practice</td>
</tr>
</tbody>
</table>
### Quality Dimension

<table>
<thead>
<tr>
<th>Accuracy and reliability</th>
</tr>
</thead>
</table>

### Indicator

**Imputation rate**

The indicator is expressed as the ratio of the number of replaced values to the total number of values for a given variable.

### Notes

ESS QPI - A7. Imputation - rate
Recent developments on GSBPM

• “Linking GSBPM-GSIM”
• “Geospatial view of GSBPM”
• “GSBPM tasks”
The Generic Statistical Information Model (GSIM) is a reference framework of internationally agreed definitions, attributes and relationships that describe the pieces of information used in the production of official statistics (information objects). This framework enables generic descriptions of the definition, management and use of data and metadata throughout the statistical production process, such as the ones described by GSBPM. GSIM is a conceptual model and does not prescribe how the information should be implemented. Current version of GSIM is 1.2

GSIM and GSBPM should be complementary
**GSIM & GSBPM**

**Input**
- Statistical Need
- Exchange Objects
- Structure objects
- Concept objects

**Output**
- Assessments
- Exchange Objects
- Structure objects
- Concept objects

**Process (GSBPM Phase 5)**
- Statistical Programme

**Input**
- Structure objects
- Concept objects

**Output**
- Structure objects
- Concept objects

**Review and validate (GSBPM 5.3)**
- Business Process

**Input**
- Data Set, Data Structure
- Concept objects

**Output**
- Data Set, Data Structure
- Concept objects

**Validation check: “1000 errors”**

**Output**
- Process Output (e.g. Process Metric)
- Data Set, Data Structure
- Variable

Linking GSBPM GSIM task team worked at this level [https://statswiki.unece.org/display/GSBPM/Information+flow+within+GSBPM+using+GSIM](https://statswiki.unece.org/display/GSBPM/Information+flow+within+GSBPM+using+GSIM)
**Linking GSIM & GSBPM**

Table 1. Specification level (design time)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Core Input type:</em></td>
<td><em>Process Method:</em></td>
<td><em>Core Output type:</em></td>
</tr>
<tr>
<td><em>Parameter Input type:</em></td>
<td></td>
<td><em>Process Metric type:</em></td>
</tr>
<tr>
<td><em>Process Support Input type:</em></td>
<td></td>
<td><em>Process Execution Log type:</em></td>
</tr>
</tbody>
</table>

**Process Control Design:**

Figure 1. Diagram for the specification level
Linking GSIM & GSBPM

Phase 5. Process
## Linking GSIM & GSBPM

### Sub-process 5.4 Edit and impute

|---------------------|----------------------------|----------------|-----------------------------|
| **Core Input type** | **Data Sets** to be edited and imputed  
**Data Structures** specifying the structure of **Data Sets**  
**Represented Variables** to be edited and imputed  
**Process Methods** specifying methodology and associated **Rules** to conduct editing & imputation (E&I) | **Process Method**  
Review **Data Sets and Process Methods**  
Apply **Process Methods and Rules** to edit and impute **Represented Variables in Data Sets**  
Calculate quality measures specified by **Process Methods**  
Update **Data Sets** and associated element in **Data Structure** with results from review and validation | **Core Output type**  
**Data Set (Unit Data Set)** edited and imputed  
**Data Structure** specifying the structure of **Data Set**  
(e.g., if there are flags that correspond to additional **Represented Variables**)  
**Referential Metadata Set:** descriptions of the **Process Methods** used, quality information summarising **Process Metrics** or any other relevant information to be passed along with **Data Sets**  
**Process Metric type**  
Quality measures related to E&I such as:  
- **Edit failure rate**  
- **Imputation rate**  
Quality measures of Process Step such as:  
- **Time spent to complete the Process Step** (derived from Process Execution Log)  
- **Cost spent to complete the Process Step**  
**Process Execution Log type**  
Execution log such as  
- **Time that Process Step started**  
- **Time that Process Step ended**  
- **Any message or event log generated from software used for E&I (e.g., completion of E&I algorithms)** |
| **Parameter Input type** | Parameter values to be used for editing and imputation methodologies as specified in Process Method such as:  
- **Editing/imputation model parameter**  
- **Choice of edit rule** (e.g., hard vs. soft)  
- **Choice of model assumptions or hypotheses** (e.g., parametric vs. non-parametric, linear relationship vs. non-linear relationship)  
- **Threshold values** | |
| **Process Support Input type** | **Data Set:** auxiliary **Data Set**  
**Data Structure** specifying the structure of the auxiliary **Data Set**  
Technical / methodological handbooks, policies or guidelines to be followed regarding E&I as well as quality management | |
The purpose of this document is to compile examples from countries that have added lower-level activities to their national version of GSBPM, and to develop a list of common tasks for all GSBPM sub-processes without losing the generic nature of the model under a set of principles (e.g., coding, granularity, minimality, description format) with reference to the current version of the GSBPM (version 5.1).”

“The list of tasks was developed based mainly on the description of each sub-process in the GSBPM, by adding country examples as well as feedback received from the community. Each task uses the format of “Action verb + an object” as well as with hierarchical coding (e.g., 1.1.1, 1.1.2, etc.).”
GSBPM Tasks: example

2.1. Design outputs

24. This sub-process contains the detailed design of the statistical outputs, products and services to be produced, including the related development work and preparation of the systems and tools used in the "Disseminate" phase. Processes governing access to any confidential outputs are also designed here. Outputs should be designed to follow existing standards wherever possible, so inputs to this process may include metadata from similar or previous collections (including extractions from statistical, administrative, geospatial and other non-statistical registers and databases), international standards, and information about practices in other statistical organisations from sub-process 1.1 (Identify needs). Outputs may also be designed in partnership with other interested bodies, particularly if they are considered to be joint outputs, or they will be disseminated by another organisation.

2.1.1 Design statistical concepts
2.1.2 Design statistical outputs, products and services and necessary components
2.1.3 Design dissemination procedure
2.1.4 Design systems and tools for dissemination

Note: 2.1.1: Sub-process 1.4 (Identify concepts) touches on concepts, but it does not seem that it is where we decide on concepts. Design of concepts is crucial for design of output.

Note: 2.1.2: e.g., it could include quality level, dissemination calendar, access to confidential outputs and examples on necessary components are table, chart and metadata.
The Istat experience on business process documentation: SIDI/SIQual

Istat official information system for documenting quality and reference metadata of the statistical production processes

SIDI «input» system, SIQual for consultation

SIDI first implementation in 2001, later converted in a web-based architecture


SIDI/SIQual approach to documentation is highly structured and standardised, descriptive additional fields are available to better describe standard items
SIDI/SIQual contents

CONCEPTUAL METADATA
Themes
Units

OPERATIONS
Phases
Operations
Sub-operations

GENERALISED SOFTWARE
Phases
Software

QUALITY CONTROL ACTIONS
Phase/Non sampling Errors
Preventing
Monitoring
Evaluating

IN-DEPTH DOCUMENTATION:
Sampling design
Index production methodology

DOCUMENTS REPOSITORY
Regulations, Manuals
Questionnaires
Documents (field operations, methods, standards, ...)

Standard quality indicators
Process oriented
Coverage
Unit non response
Coding
Editing and imputation
Costs

Product oriented
Revision analysis
Timeliness and punctuality
Coherence preliminar/final results
Coherence with other sources
Lenght of comparable time series
Phases of the production process

- Planning
  - Frame development
  - Data collection mode
    - Data pre-processing
    - Editing and imputation
    - Data processing
      - Data validation
  - Data storage
  - Dissemination
  - Evaluation
    - Replanning survey procedures and tools
SIDI/SIQual example of documentation

Operations, quality control actions and generalised software

Data collection mode

Collapse

- Self-administered data collection via electronic transmission
  - Self-administered data collection by e-questionnaire (Computer Assisted Web Interviewing-CAWI) or through upload of datasets on Istat web site INDATA (since 31/12/2007)
  - Control on unit nonresponse
    - Prerequisites for control on unit nonresponse
      - Use of the monitoring system for structural business surveys (PERVENUTO) (since 31/12/2007)
      - Control on interview outcome codes (completed, refused, noncontacted, duplicated, etc.) (since 31/12/2007)
    - Activities for preventing unit nonresponse
      - Survey presentation letter signed by Istat President (since 31/12/2007)
      - Guarantees on statistical confidentiality (since 31/12/2007)
      - Written description of survey objectives (since 31/12/2007)
      - Special care in writing clear instructions to fill-in questionnaires (since 31/12/2007)
      - Establishing a toll free line or telephone number for further explanations (since 31/12/2007)
      - Administrative fines for nonrespondents (since 31/12/2007)
      - Special care in drafting clear instructions for database setting up (since 31/12/2007)
      - Establishing an e-mail address for information on the web procedure (since 31/12/2007)
  - Follow-ups of nonrespondent units
    - Telephone follow-ups (since 31/12/2007)
    - Mail follow-ups (since 31/12/2007)
    - Follow-ups by Postel (since 31/12/2007)
    - Follow-ups by e-mail (since 31/12/2007)
Mapping GSBPM and SIDI/SIQual model

**GSBPM**
- 1. Specify needs
- 2. Design
- 3. Build
- 4. Collect
- 5. Process
- 6. Analyse
- 7. Disseminate
- 8. Evaluate

**ISTAT SIDI/SIQual**
- Planning
- Frame Development
- Re-planning
- Data Collection
- Data Pre-processing
- Editing and Imputation
- Data Processing
- Data Validation
- Statistical Disclosure Control
- Dissemination
- Data Storage
- Documentation
- Evaluate (QIs and Quality Control)
<table>
<thead>
<tr>
<th><strong>SURVEY</strong> GSBPM1</th>
<th><strong>GSBPM2</strong></th>
<th><strong>SIDI/SIQual</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Design</strong></td>
<td><strong>Design collection</strong></td>
<td>Planning analysis unit contact and observation: direct interview, telephone interview, photocopy of administrative documents, etc.</td>
</tr>
<tr>
<td></td>
<td><strong>Design data collection modes</strong></td>
<td>Planning data collection modes</td>
</tr>
<tr>
<td></td>
<td><strong>Design data entry modes</strong></td>
<td>Planning data entry modes</td>
</tr>
<tr>
<td></td>
<td><strong>Questionnaire design</strong></td>
<td>Questionnaire design</td>
</tr>
<tr>
<td></td>
<td><strong>Design frame and sample</strong></td>
<td>Frame implementation planning</td>
</tr>
<tr>
<td></td>
<td><strong>Design processing and analysis</strong></td>
<td>Planning data analysis and tabulation procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning editing and imputation methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Definition procedures for automatic editing and imputation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Classification and coding planning</td>
</tr>
<tr>
<td><strong>Collect</strong></td>
<td><strong>Create frame and select sample</strong></td>
<td>Drawing the list of reporting units from a non-Istat frame (e.g. Chambers of Commerce, Industry and Crafts - C.C.I.A.A.)</td>
</tr>
<tr>
<td></td>
<td><strong>Run collection</strong></td>
<td>Computer Assisted Telephone Interviewing (CATI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Assisted Personal Interviewing (CAPI)</td>
</tr>
<tr>
<td><strong>Process</strong></td>
<td><strong>Classify and code</strong></td>
<td>Computer assisted coding supported by interactive software (expert systems)</td>
</tr>
<tr>
<td></td>
<td><strong>Review and validate</strong></td>
<td>Review based on constraints among records of the same survey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error detection based on consistency edits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic error detection during data entry based on consistency edits</td>
</tr>
<tr>
<td></td>
<td><strong>Edit and impute</strong></td>
<td>Probabilistic error and outlier detection and nearest-neighbour donor imputation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deterministic error and outlier detection and imputation based on deterministic rules (IF-THEN)</td>
</tr>
<tr>
<td></td>
<td><strong>Calculate aggregates</strong></td>
<td>Estimate calculation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting up final macrodata files for Eurostat</td>
</tr>
<tr>
<td></td>
<td><strong>Finalise data files</strong></td>
<td>Setting up final microdata files for Eurostat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting up final microdata files for Istat National Accounts Division</td>
</tr>
<tr>
<td><strong>Analyse</strong></td>
<td><strong>Prepare draft outputs</strong></td>
<td>Processing final indexes</td>
</tr>
<tr>
<td></td>
<td><strong>Validate outputs</strong></td>
<td>Coherence control with previous data of the same survey</td>
</tr>
<tr>
<td><strong>Disseminate</strong></td>
<td><strong>Update output systems</strong></td>
<td>Dissemination in Istat data bases accessible at the Data shop, Regional Offices or other locations</td>
</tr>
<tr>
<td></td>
<td><strong>Produce dissemination products</strong></td>
<td>Publication of insights or specific studies (Series &quot;Argomenti&quot;, &quot;Metodi e Norme&quot;, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publishing data in volumes of International Organisations (OECD, Eurostat, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publication of final data on survey-specific volumes (Series Yearbooks, &quot;Informazioni&quot;, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publication of data on Istat general volumes (Statistical Yearbook, &quot;Conoscere l'Italia&quot;, Italian Statistical Compendium, etc.)</td>
</tr>
<tr>
<td><strong>Evaluate</strong></td>
<td><strong>Manage release of dissemination products</strong></td>
<td>Release of File Standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microdata File for Research (MFR) release</td>
</tr>
<tr>
<td><strong>Overarching</strong></td>
<td><strong>Data management</strong></td>
<td>Disseminating quality indicators supporting statistical information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developing electronic tools for quality indicators computation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data storage in a local repository</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microdata file storage in Istat Validated microdata repository (ARMIDA)</td>
</tr>
</tbody>
</table>
Applying GSBPM to multisource statistical processes: work in progress at Istat

- One of the pillars of Istat modernisation process has been the System of Integrated Statistical registers.
- Each Statistical register of the system is a complex multisource statistical process.
- An internal Working Group designed a system of quality indicators to monitor and assess such complex processes, also with a view to feeding the new metadata system of the Institute (that is being designed, also).
- GSBPM was used to map this processes.
Applying GSBPM to multisource statistical processes: work in progress at Istat

- Focus on a subset of GSBPM subprocesses
- The workflows can be different. The one reported is only an example
Metadata model for each GSBPM sub-process

<table>
<thead>
<tr>
<th>Macro Item</th>
<th>GSIM Object</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input</strong></td>
<td></td>
</tr>
<tr>
<td>Transformable input</td>
<td>Open</td>
</tr>
<tr>
<td>Process support input</td>
<td>Open</td>
</tr>
<tr>
<td><strong>GSBPM subprocess</strong></td>
<td></td>
</tr>
<tr>
<td>Business Function</td>
<td>Open</td>
</tr>
<tr>
<td>Process step (GSBPM sub-process)</td>
<td>Open</td>
</tr>
<tr>
<td>Rule</td>
<td>Open</td>
</tr>
<tr>
<td>Software</td>
<td>Open</td>
</tr>
<tr>
<td><strong>Output</strong></td>
<td></td>
</tr>
<tr>
<td>Transformed output</td>
<td>Open</td>
</tr>
<tr>
<td>Process Execution Log</td>
<td>Open</td>
</tr>
</tbody>
</table>

Each object is accompanied by a definition and an example in Italian. E.g.: Parameter «Oggetti forniti in input al sotto-processo per configurare il sotto-processo stesso. Es.: I parametri di un modello di stima» «Objects provided as input to the sub-process, to configure the sub-process itself. E.g.: the parameter of a model for estimating data»

The model has been developed for each GSBPM subprocess that was considered relevant for the process and tested on 2 statistical registers:
- the Base register of individuals and households RBI
- the extended register of principal economic variables FRAME-SBS
# Model for Data Integration

<table>
<thead>
<tr>
<th>Macro Item</th>
<th>GSIM Object</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input</strong></td>
<td>Transformable input</td>
<td>Data-set1, Data-set2, ...(data structure: units and variables)</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
<td>Threshold, Linkage keys, blocking variables</td>
</tr>
<tr>
<td></td>
<td>Process support input</td>
<td>Further variables useful for identification other than the keys or to control the matching</td>
</tr>
<tr>
<td><strong>GSBPM suprocess</strong></td>
<td>Business Function</td>
<td>Increasing units, increasing variables, increasing both</td>
</tr>
<tr>
<td></td>
<td>Business process (GSBPM phase)</td>
<td>5. Process</td>
</tr>
<tr>
<td></td>
<td>Process step (GSBPM sub-process)</td>
<td>5.1. Integrate data</td>
</tr>
<tr>
<td></td>
<td>Quality control actions</td>
<td>Actions for preventing, monitoring, reducing errors due to integration</td>
</tr>
<tr>
<td></td>
<td>Process Method</td>
<td>Record linkage (deterministic, hierarchical, probabilistic, privacy preserving and predictive linkages (classification or regression techniques); Statistical matching; Appending procedures; Data pooling; Integration base on data source prioritisation</td>
</tr>
<tr>
<td></td>
<td>Rule</td>
<td>Integration model, Rules for the hierarchical selection of the sources, transformation rules</td>
</tr>
<tr>
<td></td>
<td>Software</td>
<td>Relais, Statmatch, Ad hoc procedures</td>
</tr>
<tr>
<td><strong>Output</strong></td>
<td>Transformed output</td>
<td>Integrated Data set, Non linked records data sets</td>
</tr>
<tr>
<td></td>
<td>Process Metric (Quality indicators)</td>
<td>SEE NEXT SLIDE</td>
</tr>
<tr>
<td></td>
<td>Process Execution Log</td>
<td>Integration time</td>
</tr>
</tbody>
</table>
Quality indicators for data integration

Indicators on data integration performance
4.1. Missing values or errors in linkage variable
4.2. Match rate
4.3. False link rate
4.4. False non-link rate

Indicators on units
4.5. Percentage of units from different datasets on unit total

Indicators on variables
4.6 Percentage of variables from different input datasets on total number of variables in the integrated dataset
4.7 Distances between variable distributions on the integrated dataset and on the input datasets
4.8 Number of variables derived at the end of integration
# Application to RBI - variable education level last integration step

<table>
<thead>
<tr>
<th>Macro Item</th>
<th>GSIM Object</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input</strong></td>
<td>Transformable input</td>
<td>Dataset RBI2019 (AGE&gt;=9 e residente=1), dataset output step 6, dataset APR4, Master sample census</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
<td>CODICE_INDIVIDUO</td>
</tr>
<tr>
<td></td>
<td>Process support input</td>
<td>-</td>
</tr>
<tr>
<td><strong>GSBPM suprocess</strong></td>
<td>Business Function</td>
<td>Increasing variables (add education level to RBI)</td>
</tr>
<tr>
<td></td>
<td>Business process (GSBPM phase)</td>
<td>5. Process</td>
</tr>
<tr>
<td></td>
<td>Process step (GSBPM sub-process)</td>
<td>5.1. Integrate data</td>
</tr>
<tr>
<td></td>
<td>Quality control actions</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Process Method</td>
<td>Deterministic Record linkage</td>
</tr>
<tr>
<td></td>
<td>Rule</td>
<td>Left join with RBI as reference; pop_abc = A if individual is in BIT, pop_abc=B if individual is in CENS11 and not in BIT, pop_abc=C if individual is not in BIT and not in CENS11</td>
</tr>
<tr>
<td></td>
<td>Software</td>
<td>Oracle procedure</td>
</tr>
<tr>
<td><strong>Output</strong></td>
<td>Transformed output</td>
<td>Integrated Data set with all RBI units and with variables GISTR, tit_stu, pop_abc</td>
</tr>
<tr>
<td></td>
<td>Process Metric (Quality indicators)</td>
<td>SEE NEXT SLIDE</td>
</tr>
<tr>
<td></td>
<td>Process Execution Log</td>
<td>-</td>
</tr>
</tbody>
</table>
# Quality indicators on data integration: test on RBI

**Application to integration step of variable education level**

<table>
<thead>
<tr>
<th>Data source</th>
<th>4.1: missing key</th>
<th>4.2: Match rate</th>
<th>4.5: Hyerarchical coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 2019</td>
<td>0,195%</td>
<td>92,882%</td>
<td>4,711%</td>
</tr>
<tr>
<td>BIT 2017</td>
<td>0%</td>
<td>88,404%</td>
<td>22,213%</td>
</tr>
<tr>
<td>CENS 2011</td>
<td>0,001%</td>
<td>88,645%</td>
<td>68,345%</td>
</tr>
<tr>
<td>RBI 2019</td>
<td>0%</td>
<td>n.c.</td>
<td>n.c.</td>
</tr>
</tbody>
</table>
Reference

https://statswiki.unece.org/display/GSBPM/GSBPM+v5.1

https://statswiki.unece.org/display/gsim/GSIM+v1.2+Communication+Paper


https://statswiki.unece.org/display/GSBPM/Quality+Indicators+Home

UNECE (2022) Linking GSBPM & GSIM Version 1.0, January 2022  
https://statswiki.unece.org/display/GSBPM/Information+flow+within+GSBPM+using+GSIM