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1 Introduction

When planning the sampling strategy (i.e. the couple sampling design and estima-
tor) in a finite population survey setup the statistician is often looking for “the
most”efficient strategy. Godambe (1955), Lanke (1973) and Cassel et. al. (1977)
show that there is no uniformly best estimator, in the sense best for all populations.
There is also no best design. Nevertheless, it is often possible to identify a set of
strategies that can be considered as candidates. The task is to choose one among this
set.

The setup that will be used through this paper is as follows. We are interested in
the estimation of the total of a study variable. The values of an auxiliary variable are
known from the planning stage for all the elements. We will focus on study variables
that are right-skewed and we will assume that ideal survey conditions hold.

The objective is to use the auxiliary variable for obtaining an efficient strategy,
where efficiency will be understood in terms of design-based variance. The strategy
that couples proportional-to-size sampling with the regression estimator has some-
times been called optimal (see, for example, Särndal et. al. (1992); Brewer (1963);
Isaki and Fuller (1982). Wright (1983) proposed strong model-based stratification,
which couples stratified simple random sampling with the regression estimator.

Both strategies mentioned above rely on the assumption that the finite popula-
tion of interest can be seen as a realization of a particular super-population model
(shown in section 2.2). The aim of this paper is to compare the strategies and try
to empirically answer the following questions: i. when the super-population model is
correctly specified, is in fact πps—reg the best strategy?, and ii. if πps—reg was the
best strategy under a correctly specified model, is it still the best under a misspecified
model?

2 Framework

The aim is to estimate the total ty =
∑

U yk of one study variable y′ = (y1, y2, · · · , yN)
on a population U with unit labels {1, 2, · · · , N} where N is known. It is assumed
that there is one auxiliary variable x′ = (x1, x2, · · · , xN) known for each element in
U . A without-replacement sample s of size n is selected and yk is observed for all
units k ∈ s.
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In this section we describe five out of the six strategies that are spanned by two de-
signs, stratified simple random sampling —STSI— and proportional-to-size sampling
—πps— on the one hand, and three estimators, the Horvitz Thompson estimator
—HT—, the post-stratified estimator —pos— and the regression estimator —reg—
on the other hand.

The reason behind these strategies is as follows. Regarding the design, simple
random sampling does not make any use of the auxiliary information, whereas πps
makes, what we call, strong use of it. STSI lies in between, we will say that it makes
weak use of the auxiliary information. In a similar way, regarding the estimator, the
π-estimator does not make use of the auxiliary information, as opposed to the reg-
estimator that makes strong use of it. The pos-estimator lies in between, making weak
use of the auxiliary information. Then, the six strategies make use of the auxiliary
information at a different degree.

The general regression estimator —GREG—, is described in the first part of this
section. The HT, pos and reg estimators are shown as particular cases of it. In
the second part of the section, the super-population model that will be considered is
described.

2.1 The GREG estimator

The auxiliary vector xk = (x1k, x2k, · · · , xJk) is available for every k ∈ U . The General
Regression —GREG— estimator of ty is defined as

t̂GREG ≡
∑
U

ŷk +
∑
s

eks
πk

where eks = yk − ŷk and ŷk = xkB̂ with B̂ =
(∑

s

x′
kxk
akπk

)−1∑
s

x′
kyk
akπk

. The a-values

will be defined later.
No closed expression for the variance of the GREG-estimator is available, but it

can be approximated by (see Särndal et. al., 1992)

AVp

(
t̂GREG

)
=
∑
U

∑
U

∆kl
Ek
πk

El
πl

with Ek = yk − xkB (1)

where B =
(∑

U

x′
kxk
ak

)−1∑
U

x′
kyk
ak

..

This is the same expression as the variance of the HT-estimator with Ek instead
of yk. From now on we will write Vp

(
t̂GREG

)
instead of AVp

(
t̂GREG

)
.

Note that the following are sufficient (but not necessary) conditions for (1) being
equal to zero:
i. Ek = 0 for all k ∈ U . A GREG-estimator that correctly explains the study variable
will lead to small residuals and therefore a small variance.
ii. πk = nEk/tE. Even if the Ek were known, this condition cannot be fulfilled, as
some residuals will be smaller than zero and some will be larger than zero, leading to
negative probabilities. Also tE is often very close to zero, leading to many πk > 1.
iii. πk = n |Ek|

t|E|
together with πkl = πkπl if k ∈ U+ and l ∈ U−. One method for

satisfying the second part of the condition would be to stratify the population U
with respect to the sign of Ek, which, however, requires a knowledge about the finite
population at a level of detail that is seldom available. We will assume that this
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knowledge is not available and we will settle for the next condition.
iii’. πk = n |Ek|

t|E|
, which is obtained if we drop the πkl = πkπl part of condition iii.

Note that iii’ does not yield a zero variance. Why to consider condition iii’ then?
First, as will be shown below, the HT-estimator can be seen as a particular case of
the GREG-estimator, then if we have yk > 0, it is equivalent to condtion ii above,
leading to a zero variance. Second, it will be useful for defining the so-called optimal
strategy and model-based stratification in a more intuitive way, without explicitly
defining concepts like anticipated variance.

As can be seen, in the context of the GREG-estimator, conditions i and iii’ sug-
gest the specific role of the design and the estimator in the sampling strategy. The
estimator must explain the trend of the study variable with respect to the auxiliary
variable, leading to small residuals. The design, on the other hand, must explain the
residuals, in other words, how the study variable is spread around the trend.

The HT-estimator as a particular case of the GREG-estimator Let xk = 0
for all k ∈ U . If we allow 0/0 = 0 (this terrible blasphemy is justified by using a
generalized inverse in B̂ instead of the inverse, and noting that 0 is a generalized

inverse of itself) we have that B̂ =
(∑

s

x′
kxk
akπk

)−∑
s

x′
kyk
akπk

= 0. Then ŷk = xkB̂ = 0

and eks = yk − ŷk = yk − 0 = yk. The GREG-estimator becomes

t̂GREG =
∑
U

ŷk +
∑
s

eks
πk

=
∑
U

0 +
∑
s

yk
πk

= t̂π

which explicitly shows that the π-estimator can be seen as the case where no auxiliary
information is used into the GREG-estimator. Note also that Ek = yk − xkB = yk.

The post-stratified estimator Let ak = cj and xk = (x1k, x2k, · · · , xJk) with xjk
defined as

xjk =

{
1 if k ∈ U ′j
0 if not

where the U ′j (j = 1, · · · , J) form a partition of U . The post-stratified estimator, or
simply pos-estimator, is obtained when this particular type of auxiliary information
is used in the GREG-estimator. The residuals become Ek = yk − ȳU ′

j
(k ∈ U ′j) where

ȳU ′
j

= 1
Nj

∑
U ′
j
yk and Nj is the size of the j-th post-stratum.

The regression estimator Let ak = c and xk = (1, zk), with zk the result of a
known function applied on the known xk. The regression estimator, or simply, reg-
estimator, is obtained when this xk is used in the GREG-estimator. The residuals
become

Ek = yk +B2
tz
N
− ty
N
−B2zk with B2 =

Ntzy − tzty
Ntz2 − t2z

(2)

where ty =
∑

U yk, tz =
∑

U zk, tz2 =
∑

U z
2
k and tzy =

∑
U zkyk.

2.2 The super-population model and the strategies under
comparison

We will assume that the statistician is willing to admit that the following model
adequately describes the relation between the study variable, y, and the auxiliary
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variable, x. The values of y are realizations of the model ξ0

Yk = δ0 + δ1x
δ2
k + εk (3)

where the εk are random variables satisfying Eξ0 (εk) = 0, Vξ0 (εk) = δ3x
2δ4
k and

Eξ0 (εkεl) = 0 (k 6= l). Moments are taken with respect to the model ξ0 and δi are
constant parameters. The term δ0 + δ1x

δ2
k in model ξ0 will be called trend. The term

δ3x
2δ4
k will be called spread. Brewer (1963; 2002, p. 111 and p. 200-201) shows rather

heuristically that for most survey data 1/2 ≤ δ4 ≤ 1 when δ2 = 1.
Cassel et. al. (1977) prove that if model (3) holds, the minimum variance strategy

in the class of linear, design-unbiased estimators and fixed size design is πps with

πk = n
x
δ4
k

t
xδ4

where txδ4 =
∑

U x
δ4
k and GREG with known parameters. This is a

theoretical strategy that cannot be implemented in practice, as it assumes that the
model is correct and its parameters known. Model ξ0 as defined above may be used
for assisting the definition of the sampling strategy as follows.

Revisiting (πps—reg) If model ξ0 is assumed, it is natural to consider the GREG-
estimator with xk = (1, xδ2k ) at the estimation stage. In this case, we have yk =
B0 +B1x

δ2
k +Ek but also yk = δ0 + δ1x

δ2
k + ε∗k, where Ek is the residual resulting from

fitting the regression underlying the GREG-estimator and ε∗k is a realization of the
random variable εk. Then

Ek = (δ0 −B0) + (δ1 −B1)x
δ2
k + ε∗k ≈ ε∗k

In order to minimize the variance in the sense of condition iii’ one would like to use
a design having πk = n |Ek|

t|E|
. Using the approximation above we get

|Ek| ≈ |ε∗k| =
√
ε∗2k ≈

√
Eξ0 (ε2k) =

√
δ3x

2δ4
k = δ

1/2
3 xδ4k

Therefore the design must satisfy πk = n
x
δ4
k

t
xδ4

.

This strategy is often found in the literature and referred as “optimal”, in the
sense that it minimizes the anticipated variance, a model dependent statistic. A
comprehensive definition of the strategy can be found in, for example, Särndal et. al.
(1992). We have decided to introduce the strategy in a more intuitive form, without
explicitly defining concepts like anticipated variance. The sampling strategy defined
in this way will be denoted by πps(δ4)—reg(δ2).

Revisiting (STSI—reg) There are many ways for implementing STSI. We focus
on one version of Wright’s (1983) model-based stratification, as described in Särndal
et. al. (1992, sec. 12.4). Assuming the model ξ0, the GREG estimator with xk =
(1, xδ2k ) is used again. Regarding the design, STSI is considered. In order to minimize
the variance (1) we want the variances S2

EUh
to be as small as possible. The model is

used in the same way as above, defining |Ek| ≈ δ
1/2
3 xδ4k .

Ignoring the scale factor δ3, the resulting “residuals”are stratified using the ap-
proximation to the cum

√
f -rule together with Neyman allocation. Wright (1983)

showed a lower bound for the efficiency of this strategy compared to the optimal one.
The sampling strategy defined in this way will be denoted by STSI(δ4)—reg(δ2).
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Revisiting STSI—HT As mentioned before, the HT-estimator can be seen as the
case when null-auxiliary information is used in the GREG-estimator. In this case the
residuals are Ek = yk and in order to have a small variance (1) we look for strata
leading to a small sum-of-squares-within SSWy =

∑H
h=1

∑
Uh

(yk − ȳUh)2.

Using the model, the yk may be approximated by yk ≈ δ0 + δ1x
δ2
k , which leads to

H∑
h=1

∑
Uh

(yk − ȳUh)2 ≈ δ21

H∑
h=1

∑
Uh

(
xδ2k −

¯xδ2Uh

)2
So we have to look for strata leading to small SSW of xδ2k . The strata are then
created using the approximation to the cum

√
f -rule on xδ2k together with Neyman

allocation. The strategy defined in this way will be denoted by STSI(δ2)—HT and
will be considered as a benchmark.

Revisiting πps—pos Regarding the definition of the post-strata, recall that the
residuals of the pos-estimator can be written as Ek = yk − ȳU ′

j
for all k ∈ U ′j.

When looking for post-strata that minimize these Ek, a natural criterion would
be to minimize its square sum

∑
U E

2
k , but note that

∑
U E

2
k =

∑J
j=1

∑
U ′
j
E2
k =∑J

j=1

∑
U ′
j

(
yk − ȳU ′

j

)2
, which is the SSW shown in STSI(δ2)—HT above. Therefore

the post-strata will be created using the approximation to the cum
√
f -rule on xδ2k .

Regarding the inclusion probabilities, we use an approach analogous to the one
considered for πps—reg. Note that yk = ȳU ′

j
+Ek but also yk = δ0 + δ1x

δ2
k + ε∗k. Then

Ek = δ0 + δ1x
δ2
k + ε∗k− ȳU ′

j
. In order to minimize the variance in the sense of condition

iii’ one would like to use a design having πk = n |Ek|
t|E|

. As the Ek are unknown, we use

|Ek| ≈

√
Eξ0

[(
δ0 + δ1x

δ2
k + εk − ȲU ′

j

)2]
≈ δ

1/2
3

√(
1 +

2

Nj

)
x2δ4k +

tx2δ4 ,U ′
j

N2
j

≡ δ
1/2
3 vk

where the approximation xδ2k ≈ x̄δ2U ′
j

was used in order to obtain the last expression,

Nj is the size of the j-th post-stratum and tx2δ4 ,U ′
j

=
∑

U ′
j
x2δ4k . Using condition iii’

and these proxies for the residuals, we have that the design must satisfy πk = nvk
tv

where tv =
∑

U vk. The sampling strategy defined in this way will be denoted by
πps—pos(δ2).

Revisiting STSI—pos In this case the post-stratified estimator is used again in
the same way as in the strategy above, this means that post-strata are created using
the approximation to the cum

√
f -rule on xδ2k . The same approximated residuals are

then obtained. The strata are defined by applying the approximation to the cum
√
f

on the vk defined above and the sample is allocated using Neyman allocation. The
sampling strategy defined in this way will be denoted by STSI—pos(δ2).
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