Integration of survey and administrative data for statistics production - a new framework

Li-Chun Zhang

 $University\ of\ Southampton\ (L.Zhang@soton.ac.uk)$

& Statistics Norway (lcz@ssb.no)

Outline

- Combining survey and administrative (NB. register) data beyond survey sampling paradigm

- Case-in-point: use of **VAT** data for **STS**
- Error sources for integrated statistical micro data
- Progressive nature of register data
- A **prediction framework** for progressive data

Register data for use of sampling frame

- Business Register (BR) incl. classification, mea-of-size, etc.
- Central Population Register (CPR) for household surveys
- Address file including post code, etc. for area sampling
- Future: Geo-referenced Immobility Register (IR)
 - immobility: property, land, natural resource, etc.
 - multistage sampling: cost vs. efficiency
 - traditionally: fixed clusters & random sub-sampling
 - use Geo-IR for dynamic clustering in order to maximize within-cluster variance

Register data as auxiliary information

- Reducing sampling error
 - household: **post-stratification** and **calibration**
 - business: **ratio** and **regression** estimation
 - indirect **small area estimation** at detailed levels
- Reducing **nonresponse error**
 - response enhancement during data collection
 - statistical adjustment after data collection
 - bias exploration throughout the statistical processes

Register data for use beyond survey sampling paradigm

- Register = **auxiliary** data in survey sampling paradigm
- Extended roles under data integration paradigm
 - register as **target** data (e.g. Wallgren & Wallgren, 2006)
 - register as **proxy** data
 - lack inherent relevance due to nature-of-source
 - -NB. proxy \neq auxiliary
 - integration (incl. survey, census) to satisfy qualityrequirements incl. statistical relevance

Illustrating statistical vs. definitional relevance

- ILO-employment status in Labour Force Survey (LFS)
- \neq register-based (**R**) employment status by **definition**
- Individual equality **not** expected in general even with perfect register data = **lack** of **definitional relevance**
- Process register-based employment status such that
 - register-employment total = LFS-employment total
 - achieve statistical relevance in this respect
 - at detailed levels, R-employment total has **smaller**MSE than LFS-estimates (Fosen & Zhang, 2011)

Use of VAT data for STS

- Alternative approaches by (data source, coverage):
- 1. **BR** + **MBS** Monthly Business Survey (<u>all</u> units)
- 2. BR + VAT/MBS (super units) + MBS (rest units)
- 3. BR + MBS (largest units) + VAT (rest units)
- 4. BR + VAT (all units; in retrospect)
- Key issues
 - target population & classification on combined sources
 - relevance & compatibility between survey and registers
 - timeliness vs. burden/resource

A two-phase life-cycle model for error sources (I): primary-source data

A two-phase life-cycle model for error sources (II): secondary integrated data

Units and measurement

- Representation: units in multiple sources
 - alignment of business, statistical & VAT units
 - ref. aligned sets & identification error
 - a unit-error theory (Zhang, 2011)
- Measurement:
 - ref. reclassified measures & mapping error
 - apportion btw. units & calendarization over periods
 - depends on alignment under representation

Longitudinal progressive nature of administrative data

- Longitudinal data for different time points of interest
- **Progressive measurement**: available value for a given time point of interest may **evolve** over time
 - administrative data typically event-triggered
 - delay, error & change of registration
 - distinct feature compared to sample survey & census
- Inference for register-based statistics requires **modelling** (Zhang and Pritchard, 2013)

Illustration: progressive Business Register (Hedlin et al. 2006)

Illustration: progressive Employment Register (Zhang & Fosen, 2012)

Table 2. Historic data in the NEER. Reference time point in week 45 of 2002, 2004 and 2006. Measurement time point (*t*) in days after the reference time point.

	Reference Time Point								
	Year 2002			Year 2004			Year 2006		
t	a_t	b_t	$a_t - b_t$	a_t	b_t	$a_t - b_t$	a_t	b_t	$a_t - b_t$
140	0.043	0.014	0.026	0.031	0.025	0.006	0.041	0.027	0.013
365	0.070	0.036	0.035	0.044	0.036	0.008	0.056	0.037	0.019
548	0.080	0.040	0.040	0.051	0.041	0.010	0.064	0.041	0.024
730	0.084	0.041	0.043	0.055	0.043	0.012	0.068	0.042	0.025
1095	0.089	0.042	0.047	0.060	0.045	0.014	0.070	0.044	0.026
1460	0.091	0.043	0.049	0.062	0.046	0.016			
1825	0.094	0.043	0.050	0.063	0.047	0.016			
2190	0.095	0.044	0.051						
2555	0.096	0.044	0.052						

Note: (a_t, b_t) = (increase, decrease) in employment rate due to updating by time t

Problems regarding target population

- Target population: VAT-active units in period t
- Target total turnover over units in target population
- VAT turnover y(t;s) available at time s for $s \geq t$
 - y(t;s) = NA if **no value** reported for t by s
 - assume **negligible error**, i.e. $y(t; \infty) = y(t; s)$ if $y(t; s) \neq 0$
- Population-t measured s: units with $y(t;s) \neq NA$
 - activity delays: y(t;s) = NA and $y(t;\infty) \neq 0$
 - inactivity delays: y(t;s) = NA and $y(t;\infty) = 0$
 - birth delays: units 'non-existent' at s but $y(t;s) \neq 0$

Methodology regarding target population

- Birth delays
 - typically ignored; may have limited impact
 - more appropriate: **prediction** at **aggregated level**
- Activity & inactivity delays
 - typically, categorical classification by sign-of-life
 - ad hoc division between activity and inactivity delays
 - more appropriate: **prediction** for **existent units**

A prediction framework: existent units

Contribution of existent unit i to target total

$$y_i(t)I_i(t)$$

where $I_i(t) = 1$ if unit is active, and 0 if inactive

- sign-of-life approach: set $I_i(t) = 1$ if so-and-so, and 0 otherwise \Leftrightarrow ad hoc method in nature over-estimation of active delay total more likely?
- prediction approach: joint modelling of $(y_i(t), I_i(t))$ for all existent units by time s

A prediction framework: target total

A decomposition of target total for t predicted at s

• reported total: directly observed

NB. under the assumption of negligible reporting errors

- birth delay total
- report delay total of non-reporting existent units
 - avoid ad hoc treatment of $I_i(t)$ in practice
 - reporting existent units form a <u>sample</u> of all existent units
 - report sample **not selected by design**
 - extending informative sampling/nonresponse theory

Illustration based on VAT register in UK

Left: reporting rate at t + 3 (square), proportion of units with turnover ≥ 80000 (circle), proportion of inactive units (triangle); reference time points in 2010 and 2011. Right: number of reporting existent units at t + 3 (triangle), population size (circle) and predicted size (square) of units with turnover ≥ 80000 ; reference time points in 2011.

A substitution exercise based on UK data

Turnover total of existent units (circle), band-wise substitution of t-12 values for non-large units (square) for SIC-13 (80% units) and SIC-45 (85% units), with and without swapping

Developing an approach to minimize survey compliance

- Monthly self-representing sample of the largest units
 NB. cut-in threshold; emerging in-scope units; outdated units
- Register-based prediction for the rest
 - birth delay total by projection/forecast
 - cut-off existent units (80%+) by prediction
 - in-between existent units (btw cut-off & cut-in thresholds)

 NB. possible supplementary sample due to trade-off between timeliness and accuracy, difference across NACE, etc.?

Final remarks

- Better uses of VAT register for
 - construction of the **target population**
 - selection and maintenance of **certainty sample**
 - survey exemption of majority of units
 - minimizing sample of remaining units
- For long-term development: improving integration of VAT register & BR, in terms of representation and measurement, for uses across business statistics

References

- [1] Fosen, J. and Zhang, L.-C. (2011). The approach to quality evaluation of the microintegrated employment statistics. In WP4 Report: Case Studies, pp. 25 38. ESSnet on Data Integration.
- [2] Hedlin, D., Fenton, T., McDonald, J.W., Pont, M. and Wang, S. (2006). Estimating the under-coverage of a sampling frame due to reporting delays. *Journal of Official Statistics*, vol. 22, pp. 53 70.
- [3] Wallgren, A. and Wallgren, B. (2006). Register-based Statistics Administrative Data for Statistical Purposes. John Wiley & Sons, Ltd.
- [4] Zhang, L.-C. and Pritchard, A. (2013). Short-term turnover statistics based on VAT and Monthly Business Survey data sources. Paper presented at the 3rd European Establishment Statistics Workshop, Nuremberg.
- [5] Zhang, L.-C. (2012). Topics of statistical theory for register-based statistics and data integration. *Statistica Neerlandica*, vol. **66**, pp. 41-63.
- [6] Zhang, L.-C. and Fosen, J. (2012). A modelling approach for uncertainty assessment of register-based small area statistics. *Journal of the Indian Society of Agricultural Statistics*, vol. **66**, pp. 91 104.
- [7] Zhang, L.-C. (2011). A unit-error theory for register-based household statistics. *Journal of Official Statistics*, vol. **27**, pp. 415-432.