Sampling and estimation in business surveys: Introduction and overview of basic issues

Li-Chun Zhang

University of Southampton (L.Zhang@soton.ac.uk)

& Statistics Norway (lcz@ssb.no)

Outline

- Business contrast household surveys
- The unit problem: delineation and classification
- Business sample survey
 - basic design: take-none, -some & -all
 - two perennial problems: skewness & outliers
- Some examples
- More on estimation issues: has to be another time

Example of business survey: CPI (consumer price index)

- Collect price data from <u>businesses</u> (<u>mostly</u>) and <u>households</u> (e.g. rent); consumption data from <u>households</u>
- Features of sample design & data collection
 - distinct sampling frames for businesses & households
 - often **fixed representative** goods for price collection
 - statistical population \neq sampling frame
 - scan data: bless or curse? transaction data? etc.
- What are the inclusion probabilities?

Example of business survey: PRODCOM

- <u>Statistical Unit</u>: a list of **products** by EU regulation
- <u>Measure</u>: Amount produced and sold of each product

 (NB. Some products also what is retained for use of production)
- Some examples of sampling design:
 - Eurostat: 90% total covered; **cutoff** sample by no. employees
 - ONS: "stratified random sample" (ref. http://ons.gov.uk)
 - Japan: frame based on Census instead of Business Register

Example of business survey: R&D

- Yearly research and development expenditure
 - rare characteristics; skewed & truncated distribution
 - lack of efficient frame information
- Some methodological elements
 - cutoffs (e.g. 10 employees) or **take-nones**
 - threshold sample of **surprise** units (e.g. Norway)
 - yearly questionnaire vs. file-away reporting?
 - measurement interaction with innovation survey?

Business vs. household surveys

	Business surveys	Household surveys
Unit	birth, death, drifters	person etc.
(population)	complex organization	(NB. cohabitation)
Frame	Business Register	register/area-frame
Classification	SIC/NACE	household type
	measure-of-size	demographic
Annual	structural, R&D, etc.	mostly
Short-term	turnover, price, etc.	LFS
Measure	continuous & categorical	mostly categorical
	truncated; skewed; outlier	(NB. income, etc.)
Theo. framework	national account	n/a (NB. SAM)

- Business Register (BR)
 - statistical vs. administrative register
 - basis statistical register: person, business, immobility
- Business: engaged in production of goods & services e.g. enterprise, farm, government department, non-profit organization, etc.
- **Distinguish** between, among others (!),
 - sampling unit = unit-in-frame
 - statistical unit \neq business unit; e.g. job, goods, service
 - response/contact unit for data collection

- Regarding **units**
 - birth, death & drifter
 - frame = snapshot of an evolving mass
- Most important **classification**
 - NACE; measure-of-size (e.g. no. employees, turnover, etc.)
 - type of business units
 - SNA 2008: establishment \subseteq local unit \subseteq enterprise
 - SNA 2008: establishment \subseteq kind-of-activity unit \subseteq enterprise
 - Eurostat: local unit/establishment \subseteq enterprise \subseteq enterprise group
 - Eurostat: local kind-of-activity unit \subseteq kind-of-activity unit \subseteq enterprise

Multiple sources; potential lag and error of each

e.g. VAT, PAYE, D&B, CISTATS, DEFRA, Companies house for IDBR at ONS

e.g. see Hedlin et al. (2006) for lag-caused coverage errors in IDBR

Illustration: t = statistics time point, (s, s + 6) = measurement time points(n, N) = (sample, population) size, h = stratum, U = business population

U(t;s+6)			U(t;s+6)						
U(t;s)	h = 1		h = H	Death	U(t;s)	h = 1		h = H	Death
n_1	n_{11}		n_{1H}	n_{10}^*	N_1	N_{11}	• • •	N_{1H}	N_{10}^*
:		÷			:		:		
n_H	n_{H1}		n_{HH}	n_{H0}^*	N_H	N_{H1}		N_{HH}	N_{H0}^*
Birth	_		_	-	Birth	N_{01}		N_{0H}	_

- Implications for sampling design and estimation?

More on BR: classification illustrated (Smith, 2013, Box 5.1, p. 172)

Product	Sales	Input of Materials	Value Added
Cheese	200	150	50
Scallops	60	0	60
Smoked salmon	150	50	120

NACE classification of an establishment

- by sales: NACE **1051** ("diaries ...")
- by value added: NACE **1020** ("fish ...")
- in survey or according to registration on birth: ?
- Similarly between an enterprise and its local units
- Zhang (2012): partial-classification causes identification error

- Probability sampling: all units are take-somes
- Take-nones and take-alls
 - common feature of business surveys
 - requires measure-of-size as frame information
 - cutoff = take-nones; self-representing = take-alls
 - cutoff (or purposive) sample if no take-somes
 - cutoff sampling: if there are take-somes in design
- e.g. Haziza et al. (2010); Benedetti et al. (2010); Kanub (2011)
- NB. cutoff by design or cutoff due to inaccessibility?

More on cutoff sample

- Impediments

- violation of design-based inference framework
- potential drifters and outliers
- pseudo-inference common in practice

- Motivations

- imperfect frame e.g. PRODCOM
- efficiency (Brewer, 1963; Royall, 1970; model-based approach necessary)
- cost for response and process; non-sampling errors
- take-none outliers: effects curtailed by design; bias vs. robustness

- Skewed distribution: asymmetry around mean
- Truncated distribution: 0 or n/a most common

Figure: Distribution of local units (in 1000) by no. employees: IDBR 2008

- Stratification & disproportionate sample allocation
- Instrumental approach to finite-population variance
 - ullet e.g. $ad\ hoc$ remedy for truncated measure-of-size x_i 1 if truncated; add 1 if not
 - construct **instrumental** measure-of-size d_i

$$\begin{cases} d_i = y_i - \bar{Y} & \text{if truncated } x_i \\ d_i = y_i - Rx_i & \text{if not truncated } x_i \end{cases}$$

design with variance of d_i instead of variance of y_i

Perennial problem (II): outliers

- Outliers are
 - not the units with very large measure-of-sizes
 - extreme despite comparable measure-of-sizes
- A characterization of outliers (Chambers, 1986)
 - representative: correct observations; similar ones may exist out of sample issue for design & estimation
 - non-representative: observations with gross errors; do not reflect true variation in data issue for editing

- Threshold sample of "surprise units" (Kish, 1965, Sec. 12.6C): the ones that were observed to exceed a given value or threshold in the previous survey (or surveys)
- Seems intuitive if these *remain* extreme over time. Still,
 - how large can the threshold sample be allowed for compared to the probability sample? choice of threshold
 - what about the likely large contribution of a "surprise unit" to the **change estimator**?

Use of threshold sample is more efficient than not provided

$$\theta < (1 - \phi)\xi f$$

- sampling fraction f: incl. both threshold & random samples
- catch rate ξ : proportion of threshold sample above the threshold
- **prevalence** θ : proportion of population units above the threshold
- variance factor ϕ : of the units below the threshold

Or: high catch rate; low prevalence; small variance factor

NB. prevalence θ must be lower than ξf

Norwegian R&D Survey (NRDS): an illustration

Self-representing,	threshold and	probability	z sub-sami	ples of 1	NRDS 2003.
0011 10010001101110,	0111 00110101 00110	0 - 0 10 00 10 - 1	, 20 CE 10 10 CELLER	0200 02 .	

		er of Units	J	1	R&D-Val	$ue(\times 10^6)$			
Sub-sample	Total Al	ove thresh	old Catch r	Catch rate (%)		Average			
Self-representing	1737	558	32	32.1		5.576			
Threshold	187	158	84	84.5		5.310			
Probability	2510	228	228 9.1		1085	0.432			
Combined use of threshold-sample design and smooth domain estimation									
$(\xi = 0.8)$	Sumr	nary of don	nain RE	Num	ber of Do	mains			
Threshold value	Minimur	n Median	Maximum	ximum RE < 1 RE = 1 R					
1×10^{6}	.080	.287	1	50	5	0			
5×10^6	.221	.640	1	42	10	3			
$\theta = 0.05$.107	.421	1	49	6	0			
$\theta = 0.2$.086	.317	1	50	5	0			

Dealing with potential outliers that can be identified in frame

- Introduce **measure-of-activity** variable
 - require additional information to measure-of-size
 - e.g. previous **turnover** from administrative sources
- Form **threshold stratum** by measure-of-activity
 - across strata formed by measure-of-size
 - across detailed NACE classification
 - sampling fraction in threshold stratum: up to 100% for efficiency; or e.g. 50% to allow sample rotation

- **Double stratification** = (activity, size)-strata
 - population size $N = N_0 + N_1$; sample size $n = n_0 + n_1$
 - put finite-population variance $(\tilde{S}^2, \tilde{S}_0^2, \tilde{S}_1^2)$ for overall, activity-threshold- and size-stratum, respectively
- Relative efficiency of double stratification

RE =
$$\frac{N_0^2 (\frac{1}{n_0} - \frac{1}{N_0}) \tilde{S}_0^2 + N_1^2 (\frac{1}{n_1} - \frac{1}{N_1}) \tilde{S}_1^2}{N^2 (\frac{1}{n} - \frac{1}{N}) \tilde{S}^2}$$

NB. investigate how RE varies with N_0 ; trial-and-error to choose sensibly

NB. apply instrumental approach to finite-population variance

A standardized business survey design

- Tripartition: take-none, take-all & take-somes
- Instrumental approach & double stratification
- Supplement sample by **CV-maximum** (e.g. at NACE-3 level)

Proportion by activity	20 - 100%	10 - 20%	5 - 10%	1 - 5%	0 - 1%
Maximum CV	0.05	0.1	0.2	0.5	0.99

- Possible **threshold sample** of representative outliers
- NB. To be developed and implemented for
 - change estimation for short-term statistics
 - price index surveys (Zhang, 2010)

Redesign of Norwegian Structural Business Surveys: Single-establishment enterprises, situation 11.01.2012

NACE	Population	Sampl	e size	RRMSE (%)	
classification	size	Before After		Before	After
Travel	11 410	1 259	785	2,46	2,88
Land transport	18 848	1 206	775	3,74	2,31
ICT	16 441	920	475	3,61	3,31
Shipping & Air	2 485	775	604	9,80	4,05
Retail	48 637	3 679	1 754	1,88	2,02
Construction	49 222	1 634	969	5,86	2,80
Service	110 126	3 488	1 703	9,34	3,60
Industry	17 580	2 383	1 266	1,12	1,10
Environmental	1 063	112	108	10,83	4,52
Total	275 812	15 456	8 439	_	-

References

- [1] Benedetti, R., Bee, M. and Espa, G. (2010). A framework for cut-off sampling in business survey design.

 Journal of Official Statistics, vol. 26, pp. 651 671.
- [2] Brewer, K. (1963). Ratio estimation and finite populations: some results deducible from the assumption of an underlying stochastic process. *Australian Journal of Statistics*, vol. 5, pp. 93 105.
- [3] Chambers, R.L. (1986). Outlier robust finite population estimation. *Journal of the American Statistical Association*, vol. 81, pp. 1063 1069.
- [4] Haziza, D., Chauvet, G. and Deville, J.C. (2012). Sampling and estimation in the presence of cut-off sampling. *Australian and New Zealand Journal of Statistics*, vol. 53, pp. 303 319.
- [5] Hedlin, D., Fenton, T., McDonald, J.W., Pont, M. and Wang, S. (2006). Estimating the under-coverage of a sampling frame due to reporting delays. *Journal of Official Statistics*, vol. 22, pp. 53 70.
- [6] Kish, L. (1965). Survey Sampling. New York: Wliey.
- [7] Knaub, J.R. (2011). Cut-off sampling and total survey error (letter to the editor). *Journal of Official Statistics*, vol. 27, pp. 135 138.
- [8] Royall, R. (1970). On finite populations sampling theory under certain linear regression models. Biometrika, vol. 57, pp. 377 - 387.

- [9] Smith, P. (2013). Sampling and estimation for business survey, in *Designing and Conducting Business Surveys*, eds. G. Snijkers, G. Haraldsen, J. Jones and D.K. Willimack. John Wiley & Sons, Inc.
- [10] Zhang, L.-C. (2012). Topics of statistical theory for register-based statistics and data integration. *Statistica Neerlandica*, vol. **66**, pp. 41-63.
- [11] Zhang, L.-C. and Hagesæther, N. (2011). A domain outlier robust design and smooth estimation approach.

 The Canadian Journal of Statistics, vol. 39, pp. 147 164.
- [12] Zhang, L.-C. (2010). A model-based approach to variance estimation for fixed weights and chained price indices, in Carlson, Nyquist and Villani (eds), Official Statistics Methodology and Applications in Honour of Daniel Thorburn, pp. 149-166. Available at official statistics.wordpress.com