# European Establishment Statistics Workshop

12 – 14 september 2011 - Neuchâtel

# Sampling coordination of business surveys conducted by INSEE

F. Guggemos, O. Sautory (Insee)

#### **Random numbers**

Very often national statistics agencies use the permanent random numbers technique for the sampling coordination of business surveys.

Each unit k of the population (included the new units) is independently assigned a number  $\omega_k$ , selected according to the uniform distribution in the interval [0,1 [.

Poisson sampling: selection of the units k whose numbers belong to the interval [d, d +  $\pi_k$ [,  $\pi_k$  = probability of inclusion of the unit k

Simple random sampling (SRS): selection of the n units with the lowest numbers  $\omega_k$  superior to d.

Constant shift method: J panels (j = 1 ...J)

Starting point for panel j at the date a:  $d_{j,a} = d_{j,1} + (a-1)c$ ,  $a \ge 1$ 

#### **Definition of a coordination function**

Coordination function g = measurable application from [0,1[ to [0,1[ which preserves uniform probability :

if P is the uniform probability on [0,1[, then the image probability

$$P^g = P$$
.

 $\rightarrow$  for any interval I = [a,b [ included in [0,1[:

$$P(g^{-1}(I)) = P^{g}(I) = P(I) = b - a$$

#### **Selection of the units**

For each unit k in the sampling frame:

- a permanent random number  $\omega_k$ ,
- a coordination function  $g_{k,t}$  that changes at each sampling t = 1, 2, ...

#### 1. Poisson sampling

Selection of the units k such that  $g_k(\omega_k) \in [0, \pi_k[$  where  $\pi_k$  = probability of inclusion of the unit k

$$P(k \in S) = P(g_k(\omega_k) \in [0, \pi_k[) = P^{g_k}([0, \pi_k[) = P([0, \pi_k[) = \pi_k[) = \pi_k[) = \pi_k[) = P([0, \pi_k[) = \pi_k[) = \pi_k[) = \pi_k[] = \pi_k[]$$

and the drawings are independent.

#### **Selection of the units**

#### 2. SSRS

Within a stratum, selection of the n units k associated with the n smallest numbers  $g_k(\omega_k)$ .

#### Since

- P<sup>g</sup><sub>k</sub> = uniform probability P sur [0,1[ for each k
- and the n numbers  $(\omega_k)$  are drawn independently from P
- $\rightarrow$  the n numbers  $g_k(\omega_k)$  are drawn independently from P
- $\rightarrow$  the n smallest numbers  $g_k(\omega_k)$  give a simple random sample of size n in the stratum.

#### Example: the constant shift method

Let  $d_1 = 0$  and  $d_2 = c$ . We define the coordination functions:

$$g_{k,1}(\omega_k) = \omega_k$$
  $g_{k,2}(\omega_k) = \omega_k - c \pmod{1}$ 

Then:

$$\begin{aligned} k \in S_1 & \Leftrightarrow \omega_k \in \left[0, \pi_{k,1}\right[ \iff g_{k,1}(\omega_k) \in \left[0, \pi_{k,1}\right[ \\ k \in S_2 & \Leftrightarrow \omega_k \in \left[c, c + \pi_{k,2}\right[ \iff g_{k,2}(\omega_k) \in \left[0, \pi_{k,2}\right[ \\ \end{aligned} \right] \end{aligned}$$



# A step by step procedure reflecting response burdens

 $\boldsymbol{\omega} = (\dots \omega_k \dots) = \text{vector of random numbers given to the population units.}$ 

 $I_{k,t}(\omega)$  = indicator function, equal to 1 if the values in  $\omega$  lead to select the unit k in the sampling t, and 0 otherwise :

$$k \in S_t \Leftrightarrow I_{k,t}(\boldsymbol{\omega}) = 1$$

 $\gamma_{k,t}$  = response burden of a questioned enterprise k at survey t

Effective burden = random variable  $\gamma_{k,t}(\omega) = \gamma_{k,t} I_{k,t}(\omega)$ 

Cumulative burden for unit k:  $\Gamma_{k,t}(\omega) = \sum_{v < t} \gamma_{k,u} I_{k,u}(\omega)$ 

Principle: to define the coordination functions  $g_{k,t}$  for the selection of sample  $S_t$  using  $\Gamma_{k,t-1}$ :

$$\Gamma_{k,t-1}(\boldsymbol{\omega_1}) < \Gamma_{k,t-1}(\boldsymbol{\omega_2}) \Rightarrow g_{k,t}(\omega_{k,1}) < g_{k,t}(\omega_{k,2})$$

#### Two difficulties

1. to substitute for  $\Gamma_{k,t}(\boldsymbol{\omega})$  a function of  $\omega_k$  only, denoted  $\Gamma'_{k,t}(\omega_k)$ , that closely approximates  $\Gamma_{k,t}(\boldsymbol{\omega})$ .

Poisson sampling:  $I_{k,t}(\omega)$  depends only on  $\omega_k$  (indicator function of an interval of length  $\pi_k$ ), and can be denoted  $I_{k,t}(\omega_k)$   $\to \Gamma_{k,t}(\omega)$  depends only on  $\omega_k$ , and can be denoted  $\Gamma'_{k,t}(\omega_k)$ .

<u>SSRS</u>:  $I_{k,t}(\omega)$  depends on <u>all coordinates</u> of the vector  $\omega$ , but "primarily" on coordinate  $\omega_k$ : if we select the n units among N with the n smallest values  $\omega_j$ , it will be equal to 1 for values of  $\omega_k$  near to 0, regardless of the values of the other coordinates  $\rightarrow$  we will be able to replace  $I_{k,t}(\omega)$  with an approximation  $I'_{k,t}(\omega_k)$ , and therefore to replace  $\Gamma_{k,t}(\omega)$  with an approximation  $\Gamma'_{k,t}(\omega_k)$ .

2. to define the coordination function  $g_{k,t}$  such that :

$$\Gamma'_{k,t-1}(\omega_{k,1}) < \Gamma'_{k,t-1}(\omega_{k,2}) \Longrightarrow g_{k,t}(\omega_{k,1}) < g_{k,t}(\omega_{k,2})$$

#### Construction of a coordination function

 $C_{k,t}$  ( $\omega_k$ ) = criterion such that the smaller is the criterion, the larger is the probability of selection for unit k at sampling t.

We drop the subscripts k and t. C is supposed to be a bounded measurable function:

$$\omega \in [0,1[ \rightarrow C(\omega) \in IR]$$

Idea: to associate to this criterion a coordination function g<sub>C</sub> such that:

$$C(\omega_1) < C(\omega_2) \Rightarrow g_C(\omega_1) < g_C(\omega_2)$$
 (1)

 $P^{C}$  = image probability of P under C,  $F_{C}$  the distribution function of C.

The coordination function is built from  $G_C = F_C(C)$ :

$$G_{C}(\omega) = P^{C}(]-\infty, C(\omega)[) = P(C^{-1}]-\infty, C(\omega)[) = P(u|C(u) < C(\omega))$$

The way to derive  $g_C$  from  $G_C$  depends on whether or not C has *levels*.

<u>Definition</u>: we call a *level* of criterion C any inverse image of a real number y such that  $P^{C}(y) = P(A) > 0$  i.e. C has *levels* when horizontal line segments form part of the graph of C.

## Properties of G<sub>C</sub>

- The range of G<sub>C</sub> is included in [0,1[
- G<sub>C</sub> has the same levels as C
- G<sub>C</sub> verifies implication (1)
- For every y in the range of  $G_C$ , we have  $P(u|G_C(u) < y) = y$
- If C has no level, G<sub>C</sub> is a coordination function.

If C has at least one level, the range of function  $G_C$  is strictly included in [0,1[. We have to deduce from  $G_C$  another function, denoted  $g_C$ , such that the range of  $g_C$  is equal to [0,1[.



#### Coordination function with several criteria

If criterion C has levels A<sub>i</sub>, we can introduce secondary criteria C<sub>i</sub> corresponding to each level.

The coordination function verifies the following conditions:

$$\forall \omega_1, \omega_2 \in A_i \ C_i(\omega_1) < C_i(\omega_2) \Rightarrow g(\omega_1) < g(\omega_2)$$

# **Application to Poisson sampling**

$$\underline{Initialization}: \Gamma_{k,0}(\omega_k) = 0 \quad g_{k,1}(\omega_k) = \omega_k$$

$$I_{k,1}(\omega_k) = II_{[0,\pi_{k,1}[}(\omega_k) \quad \Gamma_{k,1}(\omega_k) = \gamma_{k,1} II_{[0,\pi_{k,1}[}(\omega_k)$$

For sample  $S_t$ , we choose a coordination function  $g_{k,t}$  associated to each unit k. Then:

$$k \in S_t \iff g_{k,t}(\omega_k) \in [0, \pi_{k,t}[$$

We define: 
$$A_{k,t} = g_{k,t}^{-1}[0, \pi_{k,t}[$$

$$\rightarrow$$
 indicator function:  $I_{k,t}(\omega_k) = \mathbb{I}_{A_{k,t}}(\omega_k)$ 

# **Application to Poisson sampling**

### Sampling

For a separate sample t, for the selection of the sample S<sub>t</sub>:

criterion  $C_{k,t}(\omega_k)$  = cumulative burden  $\Gamma_{k,t-1}(\omega_k)$ , and then deduce  $g_{k,t}$ 

For <u>updating a panel</u>:  $S_u = \text{sample corresponding to the latest update}$  ( $u \le t - 1$ ). We denote  $A_{k,u} = g_{k,u}^{-1} [0, \pi_{k,u}[$ 

First-stage criterion in the calculation of the coordination function : any decreasing function of the indicator function of  $A_{k,u}$ .

For example: 
$$C_{k,t}(\omega_k) = 1$$
 if  $\omega_k \in A_{k,u}$  (i.e.  $k \in S_u$ )  
= 2 if  $\omega_k \notin A_{k,u}$  (i.e.  $k \notin S_u$ )

To take into account past burdens:

cumulative burden  $\Gamma_{k,t-1}$  = secondary criterion This leads to a certain coordination function  $g_{k,t}$ .

# **Application to SSRS**

1. Calculation of the approximate  $I'_{k,t}(\omega_k)$ , by its conditional expectation

$$I'_{k,t}(\omega_k) = E(I_{k,t}(\Omega) | \Omega = \Omega_k)) = b_{k,t}(g_{k,t}(\omega_k))$$

where  $\Omega = (\Omega_1 \dots \Omega_k \dots \Omega_N)$  is a random vector from which we have a realization  $\omega$ .

#### 2. Approximation by step functions

 $I'_{k,t}$  and the cumulative burden function are no longer step functions. These functions are approximated by step functions, which are constant over predefined intervals, obtained by dividing [0, 1[ in L equal subintervals.

Then, the procedures are similar to those used in Poisson sampling.

#### **Simulation**

Fixed population of size 100.

Initial burden = 0 for each unit.

Selection of 20 samples (simple random sampling).

For each sample : sample size = 25, response burden = 1,

except:

Samples n°3 and n°15: sample size = 50, response burden = 3

Samples  $n^{\circ}10$  and  $n^{\circ}11$ : sample size =10, response burden = 2

 $\rightarrow$ mean cumulative burden = 7.4









