Swiss Confederation

Construction of Full Time Equivalent for the Swiss Business Frame

Monique Graf and Jann Potterat Swiss Federal Statistical Office, Statistical Methods Unit

European Establishment Statistics Workshop EESW11 12-14 September 2011, Neuchâtel, Switzerland

Swiss Confederation

Outline

Introduction

Method

Validation

Discussion

Introduction

Swiss business census will be replaced by the use of registers and complementary surveys.

Main sources:

- 1. Business register (BR)
 - records the new businesses
 - updates the economic activity
- 2. Social security register (SR)
 - provides information about gender, no of employees and wages at the level of the enterprise
- 3. Quarterly Survey of Employment (JobStat)
 - provides full time equivalents (FTE) on a quarterly basis for approx. 36 000 enterprises

Record linkage of BR and SR

The record linkage of the two registers is ongoing and should be completed in 2013 for the year 2011.

- ► The information should be available in the future within a two years time lag.
- ► Full time equivalents (FTE) are missing
- Very large companies are asked directly for FTE.

The FTE predictive model will be applied to the remaining companies.

Information at disposal

- 1. Information from the register (=BR+SR)
 - Characteristics of the wage distribution by gender and month
 - Total employment by gender and month
 - economic activity
 - region
- 2. Information from JobStat
 - ▶ FTE by gender on 1 day per quarter
 - Total employment by gender on 1 day per quarter
 - economic activity
 - region

Method principle

Construct FTE by model imputation:

- ► Set up a predictive model using the information on the enterprises participating to JobStat
- ► Use it to impute FTE for the other enterprises in the register.

Monthly wage distribution

Information from the register:

- Company level: company's economic activity and region;
- Employee level: working months, annual salary and gender.

Using this information, we can estimate an average monthly wage for each employee by dividing the annual wage by the no of working months.

⇒ Company's wage distribution by gender for a given month.

Model variables by quarter and by gender

Instead of predicting the FTE directly, we predict the mean occupation level (MOL) per gender in the company.

$$MOL = \frac{FTE}{TOT}$$

where TOT is the total employment by gender in JobStat. Explicative variables from the company's wage distribution:

- ▶ mean of log(wage) by gender : MW
- ▶ standard deviation of log(wage) by gender : SdW
- skewness coefficient of log(wage) by gender : SkW

Other explicative variables: NACE2 and NUTS2.

Swiss Confederation

Estimation (mass imputation)

Estimation is done using a mixed model via the SAS procedure TRANSREG:

$$y = log(MOL) = OPSCORE(NUTS2) + OSPCORE(NACE2) + IDENTITY(MW SdW SkW)$$

Then this predictive equation is applied to all non sampled companies in the register.

$$\hat{y} = \widehat{\log(MOL)}$$

$$\Rightarrow \widehat{\mathsf{FTE}} = \exp(\hat{y})\mathsf{TOT'},$$

where TOT' is the total employment by gender in the register.

Validation

Swiss Statistics

- ► The Swiss Earnings Structure Survey (SESS) is a biennial business survey that provides data on the occupancy rates and wages.
- ► The SESS makes it possible to test the feasibility of a FTE model with all the information on the same source.
- ► The SESS wage and type of workers definition is not totally the same as in the SR.

The performance of the model can nevertheless be tested on the SESS.

Overall quality

Two models have been considered:

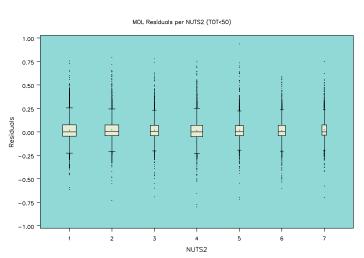
- Model 1: the estimation is done separately in 4 groups (sectors x 2 NACE groups with high or low median wage);
- ▶ Model 2: one model for the whole economy.

We show the relative difference between

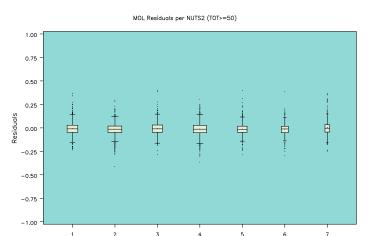
- ▶ the total FTE by NACE2 as observed in the SESS (benchmark) with
- ▶ the total given by the model.

Swiss Statistics

Overall quality


	R_{adi}^2	min	max
	•	(%)	(%)
Model 1	0.72-0.84	-6.0	7.6
Model 2	0.80	-4.6	4.8

 \min , \max : relative difference (%) with benchmark at the NACE2 level.


Swiss Statist

Model 2: log(MOL) residuals by NUTS2

Swiss Statisti

Model 2: log(MOL) residuals by NUTS2

NUTS2

Discussion

Swiss Statistics

- Prediction via the mean occupancy level permits to make full use of the provided information (total employment present in the register).
- A FTE predictive model seems to be a sensible approach to the problem of mass imputation of full time equivalents at the micro-level, when wage information is provided.
- Distinct models applied to 4 groupings do not bring any significant improvement over a unique model.

Swiss Statistics

Discussion II

- Investigations using truncated wages for the computation of the wage distribution characteristics show similar results as those presented here.
- ▶ If instead of a linear relationship we use a spline for MW, SdW and SkW, model 1 is slightly better fitting, but model 2 is not. We think that the additional complexity brought by splines is not worth the trouble.
- ▶ Instead of the log transformation for MOL, one could think of a logistic, but the observations in the SESS show that some enterprises report a FTE larger than TOT.

