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Motivation

There is currently a considerable drive at the National Statistical
Offices to exploit the administrative data in statistical production.
A number of investigations have previously been carried out at
ONS, such as forecasting VAT turnover at the unit-level, adjusting
VAT register totals towards the existing MBS-based turnover
estimates, etc. A critical question, however, remains:

How to estimate the total VAT turnover if delays in VAT
reporting is related to VAT turnover?
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Progressive Data and Informative Reporting

I The data that mature progressively, e.g. VAT turnover.

I Observation depends on the value of outcome variable.

Zhang and Pritchard (2013) extend the standard prediction
framework (e.g. Valliant et al., 2000) to progressive data and
applied it to VAT register data in UK.
Zhang and Pritchard (2013) notice potential connections of
modelling progressive data to the literature on estimation in
the presence of informative nonresponse or sampling.
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Fitting Reporting Model using MLE Approach

Let yi denote the value of an outcome variable Y (say turnover at
time t), associated with unit i belonging to an existent population
E = {1, ...,N}, a part of target population.
Let xi denote the p auxiliary variables (covariates) including,
possibly the historic y -values associated with unit i .
Let R = {1, ..., r} be the reporting part of E with observed (yi , xi ),
and let Rc = {r + 1, ..., n} be the rest part for which the outcomes
are not reported (missing) for the time being.
Consider first the approach to informative sampling (Pfeffermann,
et al., 1998a)
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Fitting Reporting Model using MLE Approach

Let Ii = 1 if i ∈ R and Ii = 0,otherwise.
The model of yi given xi in the reporting population is

fR (yi |xi ) = f (yi |xi , i ∈ R) =
Pr (Ii = 1|yi , xi )

Pr (Ii = 1|xi )
fE (yi |xi ) . (1)

Then the reporting likelihood is

LR =
r∏

i=1

f (yi |xi , i ∈ R; θ, γ) =
r∏

i=1

Pr (Ii = 1|yi , xi ; γ) fE (yi |xi ; θ)

Pr (Ii = 1|xi ; θ, γ)
.

(2)
under the assumed model Pr (Ii = 1|yi , xi ; γ) and fE (yi |xi ; θ).
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Fitting Reporting Model using MLE Approach

Different response probability models in the literature include
linear, exponential, logit and probit.
Consider e.g. the exponential model.

Pr (Ii = 1|yi , xi , i ∈ E ) = exp(α0 + α1yi + x ′γ). (3)

Let the existent population model have the normal pdf

fR (yi |xi ; θ) =
(

1
/
σ
√

2π
)

exp
{
−
(
yi − x ′β

)2/
2σ2
}

(4)

Then
fR (yi |xi ; θ, γ) ∼ N

(
α1σ

2 + x ′β, σ2
)
. (5)
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Fitting Reporting Model using MLE Approach

The log reporting likelihood function is

lR =
r∑

i=1

{
1

σ2

(
yi
(
x ′iβ
)
− 1

2

(
x ′iβ
)2 − y2i

2

)}

− r

{
log
√

2πσ2 +
r∑

i=1

(α1yi )−
1

2σ2

r∑
i=1

(
σ4α2

1 + 2x ′iβσ
2α1

)}
(6)
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Identifiability

As the model holding for reporting population is product of two
functions. It is possible to have a problem of non-identifiability.
The reporting population model given in (5) is non-identifiable
while using exponential reporting probability model, because from
likelihood function given in (6), we cannot obtain unique solution
for the unknown parameters. Also the conditions for identifiability
given in Pfeffermann and Landsman (2011) cannot hold.
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Identifiability

Identifiable reporting model can be obtained if the probability of
reporting is modeled using logistic model instead of exponential by
imposing the condition that at least one covariate should differ
among covariates used for reporting model and density of the
existent population (see Pfeffermann and Landsman (2011)).
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An alternative approach

In the minimum data scenario, with only the observed historic
values as available covariates, identification could be challenging.

As a simple alternative, we explore the use of the reporting history
of each unit to estimate its individual reporting probability, and the
corresponding estimated Pseudo MLE (EPMLE) approach.

Zahoor Ahmad and Li-Chun Zhang University of Southamton, UKMODELING PROGRESSIVE DATA



EPMLE: An illustration

To illustrate, suppose existent population E of size N, and for each
unit i , yi = β0 + β1xi + εi , and εi ∼ N

(
0, σ2i

)
, with σ2i = σ2xi .

fE
(
yi |xi ;β, σ2

)
=

1√
2πσ2xi

exp

{
−1

2

(
yi − β0 + β1xi

σ
√
xi

)2
}
. (7)

Log Likelihood function is

log (L) = −N

2
log σ2 +

∑
N

log
1
√
xi
− N

2
log 2π

− 1

2σ2

∑
N

(
1
√
xi

(yi − β0 + β1xi )

)2

. (8)
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EPMLE: An illustration

The census parameters of β0, β1 and σ2 are defined as the
solutions to the following census estimating equations∑

E

1
√
xi

(yi − β0 + β1xi ) = 0, (9)

∑
E

xi√
xi

(yi − β0 − β1xi ) = 0, (10)

∑
E

(
1
√
xi

(yi − β0 − β1xi )
)2

− σ2N = 0. (11)
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EPMLE: An illustration

Let, WN = V
−1/2
N = diag

[
ŵi/
√
xi
]

, XN =
[

1 x
]
,

X ∗N = WNXN , Y ∗N = WNYN and βFP = (β0, β1)T then,

βFP =
(
X ∗

T

N X ∗N

)−1
X ∗NY

∗
N

and

σ2FP =
1

N

∑
U

[
1

xi
(yi − β0FP − β1FPxi )2

]
=

ET
N W̃NEN

N

where E = (y − XβFP) and W̃N = diag (1/xi ).
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EPMLE: An illustration

The pseudo MLE (PMLE) of θ (e.g. Pfeffermann, 1993) is the
solution of sample estimating equations Û (θ) = 0, where Û (θ) is
design consistent of the census estimating equations
U (θ) =

∑
U ui (yi , θ).

The common estimator in the literature is H-T estimator so that
the PMLE of θ is the solution of∑

S

ui (yi ; θ)

πi
= 0.
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EPMLE: An illustration

In our case, however, the reporting probability is unknown, so we
write the reporting estimating equations as∑

R

ŵiui (yi ; θ) = 0, (12)

where θ =
(
β0, β1, σ

2
)

and ŵi = π̂−1i .

Example: π̂i = Ri/Ti , where Ri and Ti are the historic reporting
and existence counts, provided Ri follows the binomial distribution
with parameter πi .
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EPMLE: An illustration

For σ2i = σ2xi , The reporting estimating equations are given by∑
R

ŵi√
xi

(yi − β0 − β1xi ) = 0, (13)

∑
R

ŵi√
xi

(yi − β0 − β1xi ) xi = 0, (14)

∑
R

ŵi

{(
1
√
xi

(yi − β0 − β1xi )
)2

− σ2
}

= 0. (15)
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EPMLE: An illustration

Let Ŵr = V̂
−1/2
r = diag

[
ŵi/
√
xi
]

, Xr =
[

1 x
]
,

X ∗r = ŴrXr , Y ∗r = ŴrYr and β̂ =
(
β̂0, β̂1

)T
then

β̂ =
(
X ∗

T

r X ∗r

)−1
X ∗r Y

∗
r , SE

(
β̂
)
≈ σ

√(
XT
r V−1r Xr

)−1
and

̂
SE
(
β̂
)
≈ σ̂

√(
XT
r V̂−1r Xr

)−1
.
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EPMLE: An illustration

And

σ̂2 =

∑
r

[
ŵi
xi

(
yi − β̂0 − β̂1xi

)2]
∑

r ŵi
=

ET
r

ˆ̃WrEr∑
r ŵi

,

where Ê =
(
yr − Xr β̂

)
and ˆ̃Wr = diag (ŵi/xi ).

For σ2i = σ2x2i , we need to have WN = diag [1/xi ] ,

W̃N = diag
(
1
/
x2i
)
, Wr = diag [ŵi/xi ] and ˆ̃Wr = diag

(
ŵi

/
x2i
)
.
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Simulation Study

Let

yi = β0 + β1xi + εi , where β0 = 0.5, β1 = 5,

εi ∼ N
(
0, σ2i

)
, with σ2i : σ2xi and σ2x2i , where σ2 = 2

xi ∼ rbeta (3, 2)
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Simulation Study

Further let,

Ti ∼ Bin (10, 0.60) be the existent history,

πi ∼ U (0.6, 1) be the probability of reporting,

Ri ∼ Bin (Ti , πi ) be the reporting history and

ri ∼ Bin (1 , πi ) be the current reporting indicator.
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Simulation Study

We can write π̂i = Ri/Ti . For EPMLE, consider ŵi = π̂−1i .

We also tried the following alternative weights:

1. Ratio adjusted to existent population total, i.e.
ŵ2i = ŵi

∑
E xi/

∑
R ŵixi

2. Calibrated (GREG) using constraint
∑

E xj =
∑

R wjxj , i.e.

ŵ3i = ŵi +

[
1 + (

∑
E xj −

∑
R ŵjxj)

T
(∑

R ŵjxjx
T
j

)−1
xi

]
.
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Simulation Study

The following table shows the results of average estimates of the
parameters and their empirical standard errors for 1000 simulations
of randomly selected reporting population using the reporting
indicator ri from an existent population of size N = 3000. The
average reporting population is 2400.533.

Zahoor Ahmad and Li-Chun Zhang University of Southamton, UKMODELING PROGRESSIVE DATA



Simulation Study

Table: Mean Estimates and Empirical SE when πi ∼ U (0.6, 1)

σ2i = 2xi
Mean Estimates Empirical SE

β̂0 β̂1 σ̂2 β̂0 β̂1 σ̂2 Weights

POP 0.5136 4.9834 1.9693 0.0469 0.0852 0.0512
EPMLE 0.5129 4.9839 1.9717 0.0556 0.1013 0.0619 ŵ1i

0.5129 4.9839 1.9717 0.0556 0.1013 0.0619 ŵ2i

0.5130 4.9838 1.9711 0.0553 0.1007 0.0619 ŵ3i

σ2i = 2x2i
POP 0.4995 5.0018 1.9973 0.0254 0.0565 0.0526

EPMLE 0.4993 5.0024 1.9956 0.0310 0.0682 0.0628 ŵ1i

0.4993 5.0024 1.9956 0.0310 0.0682 0.0628 ŵ2i

0.4994 5.0024 1.9956 0.0306 0.0674 0.0628 ŵ3i

Zahoor Ahmad and Li-Chun Zhang University of Southamton, UKMODELING PROGRESSIVE DATA



Simulation Study

For the case of informative reporting, we can allow πi to depend
on outcome variable and then let πi = [1 + exp (−0.45yi )]. The
simulation results for 1000 populations of size 3000 are,

Table: Mean Estimates and Empirical SE, πi = [1 + exp (−0.45yi )]

σ2i = 2xi
Mean Estimates Empirical SE

β̂0 β̂1 σ̂2 β̂0 β̂1 σ̂2 Weights

POP 0.5144 4.9828 1.9680 0.0481 0.0878 0.0490
EPMLE 0.4955 4.9700 1.9874 0.0594 0.1046 0.0626 ŵ1i

0.4955 4.9700 1.9874 0.0594 0.1046 0.0626 ŵ2i

0.4957 4.9695 1.9869 0.0592 0.1043 0.0626 ŵ3i

σ2i = 2x2i
POP 0.4995 5.0022 1.9985 0.0255 0.0575 0.05204

EPMLE 0.4999 4.9743 2.0112 0.0316 0.0676 0.0639 ŵ1i

0.4999 4.9743 2.0112 0.0316 0.0676 0.0639 ŵ2i

0.4999 4.9743 2.0111 0.0313 0.0676 0.0641 ŵ3i
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Theoretical Properties

Standard PMLE for survey data: known πi ’s. Estimating equation
theory: consistency of estimators and the central limit theorem can
be proved under some regularity conditions.

Common modelling approach to πi : assume global parameters,
which can be estimated consistently, from which the consistency of
the EPMLE follows.

In case above: we estimate πi based on limited history of each
unit. The asymptotic setting is N →∞, where Ti = O(1) and
π̂i − πi = Op(1) and E (π̂i ) = πi .
Needs a different proof of the theoretical properties of EPMLE.
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