On calibration in DG-1 business survey

Maciej Beręsewicz (Poznan University of Economics, Statistical Office in Poznan)

Introduction

The goal of the presentation is to discuss the calibration approach in the context of short-term business statistics on the DG-1 survey example.

The following aspects will be presented:

- Description of the current sample selection scheme.
- (Self-)selection mechanism in relation to design and other variables.
- Correlation between propensity score and selected target variables.
- Weighting schemes and calibration approach.

DG-1 survey – the target population

- ▶ DG-1 is a monthly survey of establishments.
- ► The target population are establishments over 9 employees that are classified into two groups – big (over 49 employees) and medium (between 10-49 employees).
- ▶ In addition, establishments that are classified by European Classification of Economic Activities (NACE) starting with B to J, L, M (z excluding divisions 72 i 75), N, R and division 02, 95, 96 and class 03.11 take part in the survey.

DG-1 survey – scope of the survey

- Sales.
- Taxes and subsidies,
- Number of employees,
- Working time,
- Salaries,
- Base price indexes,
- Turnover,
- New orders/contracts,
- Transportation.

DG-1 survey – sample selection and allocation

How the sample is selected?

- Statistical Unit Database (pol. Kartoteka) the sampling frame for DG-1 survey (updated on monthly basis \sim 7 mln establishments from 2009-1 to 2014-9).
- ▶ All **big** establishments are obligated to take part in the DG-1 survey.
- ▶ At least 10% of all medium establishments stratified by ownership (private, public) section, division and group and section G defined in NACE (in total 453 strata) are selected.
- ▶ Minimum sample size for each strata is defined as follows

$$[\frac{\# units \ in \ section/division/group \ NACE}{10} + 1]$$

Where # denotes number of, [] denotes ceiling.

► Sample is drawn in the begining of January on each year.

Motivation – self-selection

We know that (Bethlehem 2010), in case of self-selection sample surveys bias of the mean of the target population is given by:

$$\textit{Bias}(\bar{y}_s) = \frac{\textit{N}_\textit{ns}}{\textit{N}}(\bar{Y}_s - \bar{Y}_\textit{ns}) + \frac{\textit{C}(\rho, Y)}{\bar{\rho}} = \frac{\textit{N}_\textit{ns}}{\textit{N}}(\bar{Y}_s - \bar{Y}_\textit{ns}) + \frac{\textit{R}(\rho, Y)S(\rho)S(Y)}{\bar{\rho}}$$

where Y is a target variable, \bar{y} denotes sample mean, s denotes sampled units, ns denotes not sampled units, N denotes number of units in population, N_{ns} denotes number of not sampled units, ρ denotes propensity score, $R(\rho, Y)$ denotes correlation between propensity scores and target variable(s), $S(\rho)$ is standard deviation of propensity scores and S(Y) is standard deviation of target variable(s).

Motivation – self-selection

 ρ denotes propensity score given by:

$$\rho(X) = P(r = 1|X)$$

where r denotes response to survey (1 answer, 0 refusal) and X variables that we consider as a explanatory for the response behavior of units. $\rho(X)$ can be estimated using various methods (e.g. logistic regression, random forest).

Motivation – self-selection

- Imputation or weighting adjustments can correct sample distribution of X to known population totals,
- However, when a strong correlation between ρ and Y is observed the bias in statistics may still be present.

$$|B_{max}| = S(Y)\sqrt{rac{1}{ar{
ho}}-1}$$

► The self-selection (or a non-ignoble unit non-response) problem is common in business surveys.

Therefore, we will study the self-selection mechanisms before applying weighting procedures.

DG-1 survey — basic information about the DG-1 sample and population

Table 1: Sample count (in percent) by size of company

SIZE	Min	Mean	Median	Max
Big	96.55	98.05	98.12	98.55
Medium	16.77	17.79	17.45	18.94

Table 2: Population count by the size of company

SIZE	Min	Mean	Median	Max
Big	18008	18694	18766	19462
Medium	67087	76106	78806	83073

Table 3: Distribution between non-sampled, sampled and population count by business ownership

Ownership	Non-sampled	Sampled	Population	
Public	2.59	6.93	3.36	
Private	97.41	93.07	96.64	

DG-1 survey – differences between sampled and non-sampled units

Table 4: Distribution between non-sampled, sampled and population count by NACE

NACE	Non-sampled	Sampled	Population
Α	0.53	1.56	0.72
В	0.29	0.58	0.34
С	27.37	28.82	27.63
D	0.23	0.79	0.33
E	1.12	2.18	1.31
F	15.73	10.70	14.84
G	28.82	29.70	28.98
Н	6.43	4.59	6.10
	4.67	3.71	4.50
J	2.09	2.76	2.21
L	2.22	2.98	2.36
М	4.81	4.43	4.74
N	2.65	3.84	2.86
R	2.06	2.37	2.11
S	0.98	1.01	0.98

Details about the data – number of employees in medium companies

Calculation of propensies

The following models were considered:

- the model for each month separately
- the model for each month separately with additional information on previous month (took, or not took part in the survey)

The final model contained the following variables

- ▶ $Sampled_{t-1}$ indicator whether a unit was in a t-1 sample (=1,else 0)
- VID Voivodeship (16 levels)
- ▶ CITY City (whether a company is from a city = 1, else = 0)
- NACE NACE classification
- ► SIZE Size of the company (2 levels, reflevel = 'BIG')
- OWN Ownership Status (2 levels, reflevel = 'Public')

Number of Employees (NoE) was removed due to computational problems.

Propensity scores over time

Date	SDy	Mean_y	SD_rho	Mean_rho	Corr	Bias
2009-02-01	1.714	2.417	0.087	0.988	0.006	0.001
2009-03-01	2.661	2.521	0.065	0.994	0.082	0.014
2009-04-01	2.409	2.500	0.041	0.998	-0.041	-0.004
2009-05-01	3.466	2.477	0.035	0.998	0.113	0.014
2009-06-01	2.264	2.477	0.044	0.998	-0.007	-0.001
2009-07-01	2.359	2.507	0.042	0.997	-0.037	-0.004
Date	SDy	Mean_y	SD_rho	Mean_rho	Corr	Bias
2014-04-01	2.424	2.990	0.033	0.998	0.056	0.004
2014-05-01	2.097	2.930	0.033	0.999	0.023	0.002
2014-06-01	2.332	2.980	0.038	0.998	0.018	0.002
2014-07-01	2.362	3.005	0.033	0.998	-0.152	-0.012
2014-08-01	2.181	2.942	0.036	0.999	-0.027	-0.002
2014-09-01	2.351	2.984	0.035	0.998	-0.022	-0.002

Propensity scores over time

Propensity scores over time

Propensity scores over time – why it happen?

The calibration approach

I have applied the standard calibration approach (Deville and Särndal 1992) given by

$$min \sum_{s} G_k(w_k, d_k)$$

with subject to the calibration equation

$$\sum_{s} d_k \mathbf{x}_k F(q_k \mathbf{x}_k' \boldsymbol{\lambda}) = \sum_{U} \mathbf{x}_k$$

using logit distance function given by

$$G(x) = x(\log(x) - 1) + 1$$

The calibration equations

The following variables were considered:

- ▶ VID Voivodeship (16 levels)
- OWN Ownership (2 levels)
- NoE Number of employees
- NACE Classification of company

and the following calibration equations were to met

$$\mathit{VID} \times \mathit{OWN} \times \mathit{SIZE} \times \mathit{NoE} + \\ \mathit{NACE} \times \mathit{OWN} \times \mathit{SIZE} \times \mathit{NoE} + \\ \mathit{NACE} \times \mathit{NoE} + \mathit{VID} \times \mathit{NoE}$$

where × denotes interaction between levels of variables

Average salary based on the proposed methods

Summary

- Differences between initial weights and calibrated are due to major changes in auxiliary variables (different from the ones that were used for sampling)
- ▶ There is a small correlation between propensity score and the selected target variables.
- ▶ Taking part in the survey in time t-1 is the most influential variable in the propensity score model, however this model do not take into account certain (yearly) sampling schemes. Therefore, it should be further investigated.

Discussion

- ▶ Possible solution to the problem with breakdowns (in January) is to apply logistic mixed model to estimate propensities for each units taking into account auto-correlation in time.
- Unbalanced groups (sampled and non-sampled) indicates that logistic regression may be not suitable for the propensity score estimation; or re-sampling should be used to balance groups.
- ▶ Outliers/influential obs. caused overestimation of bias in target variables due to self-selection mechanism.

Extra information

I used R and RStudio with the following additional packages:

- data.table for fast dataset summaries (much more faster than dplyr)
- tidyr for transformation of datasets (wide to long, long to wide)
- ▶ laeken for calibration
- ► Matrix for sparse matrix manipulation
- speedglm for speed logistic model computation (stats::glm is slooooow)
- parallel for parallel computations
- ggplot2 for visualisation
- ▶ knitr + rmarkdown − for the presentation

Thank you for your attention!

Literature

- 1. Bethlehem, J. (2010). Selection Bias in Web Surveys. International Statistical Review, 78(2), 161–188. doi:10.1111/j.1751-5823.2010.00112.x
- 2. Deville, J. C., & Särndal, C. E. (1992). Calibration estimators in survey sampling. Journal of the American statistical Association, 87(418), 376-382.

Calculation of propensies (example model for 2014.09)

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
            -0.557486
                        2.461187
                                   -0.227
                                            0.8208
r 2014 8
            16.307614
                        0.501779
                                   32.500
                                            <2e-16 ***
WON4
            -0.174760
                        0.698542
                                   -0.250
                                            0.8025
WON6
             0.006921
                        0.865753
                                    0.008
                                            0.9936
WON8
            -0.137486
                        0.740247
                                   -0.186
                                            0.8527
WON10
            -0.974172
                        0.700088
                                   -1.391
                                            0.1641
WON12
             0.065273
                        0.605495
                                    0.108
                                            0.9142
WON14
            -0.746577
                        0.486814
                                   -1.534
                                            0.1251
WON16
            -0.316041
                        0.984851
                                   -0.321
                                            0.7483
WON18
             0.788754
                        0.636653
                                    1.239
                                            0.2154
WON20
            -1.315827
                         1.192993
                                   -1.103
                                            0.2700
WON22
            -0.568984
                        0.793099
                                   -0.717
                                            0.4731
WON24
            -0.118951
                        0.550186
                                   -0.216
                                            0.8288
WON26
             0.510224
                        0.921634
                                    0.554
                                            0.5798
WON28
            -0.412797
                        0.705315
                                   -0.585
                                            0.5584
WON30
            -0.950822
                        0.549360
                                   -1.731
                                            0.0835 .
WUN35
            -1.155491
                         0.863818
                                   -1 1338 <sup>-1</sup>
                                            0.1810
```

Calculation of propensies (example model for 2014.09)

```
z value Pr(>|z|)
            Estimate Std. Error
(Intercept)
             5.57631
                        0.12184
                                  45.767
                                          < 2e-16 ***
r 2013 12 4.79431
                        0.10414
                                  46.037
                                          < 2e-16 ***
WON4
            -0.03317
                        0.05450
                                  -0.608
                                          0.54286
WON6
            -0.04169
                        0.05961
                                  -0.699
                                          0.48433
WON8
             0.19847
                        0.06549
                                   3.031
                                          0.00244 **
WON10
            -0.11838
                        0.05083
                                  -2.329
                                          0.01987 *
WON12
            -0.20870
                        0.04775
                                  -4.371
                                         1.24e-05 ***
WON14
            -0.53442
                        0.04371
                                 -12.228
                                          < 2e-16 ***
WON16
             0.54664
                        0.06500
                                   8.410
                                          < 2e-16 ***
WON18
             0.12432
                        0.05564
                                   2.234
                                          0.02547 *
WON20
             0.31284
                        0.06770
                                   4.621 3.81e-06 ***
WON22
            -0.14672
                        0.05128
                                  -2.861
                                          0.00422 **
                        0.04508
                                  -4.839 1.30e-06 ***
WON24
            -0.21818
WON26
             0.08807
                        0.06569
                                   1.341
                                          0.18006
WON28
             0.03604
                        0.06223
                                   0.579
                                          0.56248
WON30
            -0.31382
                        0.04675
                                  -6.712 1.92e-11 ***
WUN35
            -0.02954
                        0.05888
                                  -0.502 0.61590
```

Initial result for mixed model

```
Generalized linear mixed model fit by maximum likelihood ()
Family: binomial (logit)
Formula: sampled ~ WON + SEK + KLASA + miasta + PKD_sekcja
```

Data: dg2014

Control: glmerControl(optimizer = "bobyqa")

AIC BIC logLik deviance df.resid 111380.3 111802.2 -55654.1 111308.3 908161

Scaled residuals:

Min	1Q	Median	ЗQ	Max
-109416	0	0	0	1937

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 1.167 1.08

time 153.673 12.40 0.98

Number of obs: 908197, groups: ID, 102509

Initial result for mixed model

(Intercept)	5.5225	0.8445	6.54	6.17e-11	***
WON4	-0.8871	0.4156	-2.13	0.032797	*
WON6	2.1275	0.4915	4.33	1.50e-05	***
WON8	-0.2733	0.5043	-0.54	0.587844	
WON10	1.9342	0.3994	4.84	1.28e-06	***
WON12	-0.6104	0.3571	-1.71	0.087398	
WON14	-5.1787	0.3087	-16.78	< 2e-16	***
WON16	2.3367	0.5176	4.51	6.35e-06	***
WON18	0.9161	0.4299	2.13	0.033087	*
WON20	1.9420	0.5558	3.49	0.000476	***
WON22	1.3054	0.4086	3.19	0.001400	**
WON24	-3.5269	0.3275	-10.77	< 2e-16	***
WON26	0.2283	0.5399	0.42	0.672353	
WON28	2.1195	0.4972	4.26	2.01e-05	***
WON30	-2.1242	0.3303	-6.43	1.27e-10	***
WON32	1.5831	0.4729	3.35	0.000814	***
SEK2	-3.6060	0.4008	-9.00	< 2e-16	***
KLASAS	-12.9964	0.1605	-80.97	¹₹ 2e-16	***

Initial result for mixed model

Month	$\bar{ ho}$
1	0.9476
2	0.9984
3	0.9992
4	0.9994
5	0.9996
6	0.9997
7	0.9998
8	0.9998
9	0.9998