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Abstract

The demand for reliable business statistics at disaggregated levels such as NACE
classes increased considerably in recent years. The interest in this topic has been
reflected in the BLUE-ETS project, where work package 6 dealt with methods to
enhance the quality of business statistics. One of the main areas of research in work
package 6 was related to the modelling of business data to produce reliable small
domain estimates.

Business data are frequently characterized by skewed distributions, with a few
large enterprises which account for the majority of the total for the variable of
interest, e.g. turnover. Moreover, the relationship between the variable of interest
and the auxiliary variables is typically non-linear on the original scale. Non-linear
transformations are commonly applied to the raw data, which remove the skewness
and allow for the use of powerful linear models after transformation. This becomes
even more complicated when being interested in subgroups In small area estimation,
we are typically interested in estimating the mean or the total at the domain level.
This may lead to a problem for estimators based on non-linear transformations,
since the näıve back-transformation would be negatively biased in the case of the
popular log-transformation. In order to overcome this issue, bias correction terms
are generally included in estimators based on log-transformations.

Another challenge that NSIs face when using small area estimation techniques
for business data, is that the sum of the small area estimates should equal the design-
based estimate of the aggregate.. To achieve the coherence of small area and aggre-
gate estimates benchmarking techniques might be applied. The question whether
bias-correction and benchmarking should be combined for transformed small area
estimators has been raised recently in the context of the BLUE-ETS project.

We consider unit-level and area-level estimators and compare estimators which
use both bias-correction and benchmarking to estimators that concentrate on of
these techniques. Our analysis is conducted by means of a large-scale design-based
simulation study. This study is based on the fully synthetic TRItalia business data
set, which was generated as part of the BLUE-ETS project. The research origi-
nated within the BLUE-ETS research project financed by the European Commission
within FP7 (cf. http://www.blue-ets.eu).

1 Introduction

Business data are often characterized by skewed distributions with important outliers,
thereby violating the assumptions present in classical small area models (cf. Fay and
Herriot, 1979 or Battese et al., 1988 ). To address the issue of outliers robust es-
timators in the spirit of estimators as proposed by Sinha and Rao (2009) might be
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employed. See Schmid (2012) for a comprehensive overview on robust small area estima-
tion. Another approach which might recover some of the models assumptions is by the
use of transformations. As most small area estimation problems are in some way related
to estimating expected values of data, this leads to a problem if the transformations used
are nonlinear. In this case, simple back-transformations lead to a bias due to Jensen’s
inequality as E (log(z)) ≤ log (E(z)) for any random variable z. This bias may be re-
duced by using bias-correction techniques, some of them are compared in Chambers and
Dorfman (2003). Employing bias-reduction techniques, however, may be accompanied
by a loss in efficiency owing to a higher variation of these estimates. A thorough investi-
gation of the behaviour of small area estimates using transformations for social statistics
is given in Lehtonen et al. (2011). Shlomo and Priam (2013) discuss various bench-
marking approaches for log-transformed estimators. In the following section we briefly
introduce the small area estimators based on log-transformations used in our simulation
study. Section 3 outlines our simulation study.

2 Model-based Estimators

Our exposition of model-based small area estimators based on log- transformations follows
Zimmermann and Münnich (2013) closely. As a starting point we consider the unit-level
mixed due to Battese et al. (1988)

ydj = xT
djβ + ud + εdj, d = 1, . . . , D, j = 1, . . . , Nd, (1)

where ud denotes the domain-specific random effect, ud
iid∼ N(0, σ2

u), εdj
iid∼ N(0, σ2

ε) refers
to the individual error term and independence between ud and εdj is assumed. Model (1)
is commonly used in small domain estimation, but the assumption of a linear relationship
between the variable of interest y and the covariates x might be to restrictive in the
case of business surveys (cf. Chandra and Chambers, 2011). Frequently, the support
of the dependent variable such as revenues or labour costs is strictly positive and a log-
transformation can be applied on the variable of interest. In many cases this transformed
dependent variable can be linked to a set of auxiliary variables by means of a linear model.
Karlberg (2000) developed a bias corrected estimator based on a log-transformation of
the dependent variable based. Their estimator is based on a lognormal model and allows
for the efficient estimation of national statistics based on right-skewed variables. To
allow for the simultaneous estimation for many domains, Berg and Chandra (2012)
introduced a unit-level lognormal-mixed model

log(ydj) = xT
djβ + ud + εdj, d = 1, . . . , D, j = 1, . . . , Nd (2)

where xdj includes an intercept and the other components of it are appropriately trans-
formed. The assumptions on ud and εdj are the same as in model (1).
An empirical best predictor under model (2) minimizing the MSE has been proposed by
Berg and Chandra (2012). Their estimator is given by

θ̂EBLOG
d =

1

Nd

∑
j∈sd

ydj +
∑
j /∈sd

ŷEBLOG
dj

 where (3)

ŷEBLOG
dj = exp

(
xT
djβ̂ + ûd + 0.5σ̂2

ε(γ̂d/nd + 1)
)
. (4)
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Note that estimator (3) is domain-specific as the predictions for the non-sampled units

depend on the estimated domain-specific random effect ûd = γ̂d

(
ld − xT

d β̂
)

with ld =

1
nd

nd∑
j=1

log(ydj). Furthermore, the empirical best predictor is also biased, owing to the

nonlinear contribution of the parameter estimates (β̂, σ̂2
u, σ̂

2
ε)T to the predictions ŷEBLOG

dj

for the non-sampled units. To reduce this bias we consider applying bias corrections such
as the ratio adjustment by sample total technique to the predictions (cf. Chambers and
Dorfman (2003)). A derivation of (3) is given by Berg and Chandra (2012). In order
to estimate the MSE for estimator (3) the double bootstrap procedure as outlined by
Hall and Maiti (2006) may be considered.
An extension of Karlberg’s estimator to model (2) was introduced by Berg and Chandra
(2012). Their estimator is given by

θ̂ULSynth
d =

1

Nd

∑
j∈sd

ydj +
∑
j /∈sd

ŷULSynth
dj

 (5)

where

ŷULSynth
dj = exp

(
xT
djβ̂ + 0.5

(
σ̂2
u + σ̂2

e − xT
djV̂ (β̂)xdj − 0.25V̂ (σ̂2

u + σ̂2
e)
))

. (6)

This estimator is synthetic in the sense that it does not incorporate any domain-specific
random effects. Moreover, it is particularly important since it is closely related to the log-
transformed model-calibrated estimator developed by Chandra and Chambers (2011).
Their estimator is of the form

θ̂TrMBD
d =

∑
j∈sd

adjydj

Nd

, (7)

where adj refers to the model-based model-calibrated weight for unit j in domain d. This
weight is obtained from minimizing the distance between itself and the inverse inclusion
probability, obeying two calibration constraints:∑

j∈s

aj = N∑
j∈s

aj ŷj =
∑
j∈U

ŷj.

The first of these constraints requires the sum of the design weights in the sample to
agree with the total population size and the second constraints requires the weighted
sum of the fitted values in the sample to agree with the total of the fitted values in the
population. Note that both of these constraints are with respect to national values. Since
the calculation of the model-based model-calibrated weights requires the computation and
storage of large-scale matrices, we do not include estimator (7) in our simulation study.
In many cases, the researcher might not have access to unit-level information or important
auxiliary information may be available at aggregate level only. In this case a transformed
Fay-Herriot model might be used. An approximately bias-corrected estimator under the
area-level lognormal mixed model was introduced by Maiti (2004) and is given by

θ̂ALLOG
d = exp

(
X

T

d β̂ + ûd + 0.5σ̂2
u(1 − γ̂d)

)
. (8)
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To estimate the MSE of (8), Maiti (2004) proposes using the jackknife approach due to
Jiang et al. (2002). This leads to an MSE estimator of the form

M̂SE(θ̂ALLOG
d ) = M̂∗

1d(δ) + M̂∗
2d(δ)

where M̂∗
1d(δ) and M̂∗

2d(δ) are defined as in Maiti (2004) and δ is the vector of model
parameters. Alternatively, the mean square error of (8) might be calculated using the
second-order correct formulae given by Slud and Maiti (2006).

3 Simulation Study

The aim of our study, which is based on the TRItalia dataset described in Kolb et al.
(2013), is to estimate the mean of the labour costs in each domain. We determined the
domains as cross-classifications of NUTS 1 and the first digit of the industry classification,
which leads to D = 45 domains. The population was stratified within each domain
according to classified company size in terms of numbers of employees. We compare
the performance of estimators based on transformations described in section 2 under
different sampling designs by means of a design-based simulation study. The sampling
designs considered comprise stratified random sampling using different allocation schemes
and unequal probability sampling. The inclusion probabilities for unequal probability
sampling were determined by using the number of employees as a size variable. The
unequal probability samples were drawn within the strata as drawing the samples for the
population as a whole was not feasible.

References

Battese, G. E., Harter, R. M. and Fuller, W. A. (1988): An error component
model for prediction of county crop areas using survey and satellite data. Journal of the
American Statistical Association, 83 (401), pp. 28–36.

Berg, E. and Chandra, H. (2012): Small area prediction for a unit level lognormal
model. Federal Committee on Statistical Methodology Research Conference.

Bernardini Papalia, R., Bruch, C., Enderle, T., Falorsi, S., Fasulo, A.,
Fernandez-Vazquez, E., Ferrante, M., Kolb, J. P., Münnich, R., Pacei, S.,
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