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1 Introduction

High nonresponse is a very common problem in sample surveys today. In sta-
tistical terms we are worried about increased bias and variance of estimators
for population quantities such as totals or means. Di↵erent methods have
been suggested in order to compensate for this phenomenon. We can roughly
divide them into imputation and calibration and it is the latter approach we
will focus on here. A wide spectrum of possibilities is included in the class
of calibration estimators.
We need to distinguish between di↵erent levels of availability of variable val-
ues: The population level, the sample level and the response level. The sam-
ple is drawn by probability sampling from the population and our calibration
approach is design-based. The response is the subset of the sample for which
the study variable values are individually observed. Auxiliary variables are
essential. For the calibration technique studied in this paper, an auxiliary
variable must contain information at a higher level than the response and its
value must be known individually for all units in the response.

Notation and setup

We will start with a population U of size N from which we take a probabil-
ity sample s of size n

s

with inclusion probabilities ⇡1, . . . ,⇡N

. Nonresponse
means that we only observe the response set r of size n

r

. Our aim is to esti-
mate the study variable total t

y

=
P

U

y

k

. We assume access to an auxiliary
variable vector x of dimension J , where either (x

k

)
k2U

(the population level)
or (x

k

)
k2s

(the sample level) are known or possibly a mixture.

2 Calibration estimation

2.1 Calibration estimators under full response

Starting with the full response situation (r = s) and following the procedure
as established by Deville and Särndal (1992), the calibration estimator is
defined as

t̂

y cal

=
X

s

w

ks

y

k

,
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where the sample dependent weights w

ks

are chosen so that

X

s

w

ks

x

k

= t

x

, (the calibration equation) (1)

while also minimizing the quadratic distance measure

(w
s

� w0s

)0R(w
s

� w0s

),

where w

s

= (w
ks

)
k2s

, w0s

= (1/⇡
k

)
k2s

= (d
k

)
k2s

and R is diagonal.
In other words, given the constraint (1) the w

ks

should be ”as close as pos-
sible” to the design weights d

k

.
The resulting weights are

w

s

= w0s

+ R

�1
x

0(XR

�1
X

0)�1(t
x

� t̂

x

)

It turns out that the model assisted GREG estimator t̂

y r

(Särndal, Swensson
and Wretman (1992)) is a calibration estimator for which

R = (w0s

I

ns)
�1

,

where I

ns is the unit diagonal matrix of size n

s

.
Another calibration estimator is the optimal regression estimator t̂

y opt

(see
e.g. Rao (1994) and Montanari (1998)), for which

R = (
⇡

kl

� ⇡

k

⇡

l

⇡

kl

⇡

k

⇡

l

)�1
k,l2s

,

as shown by Andersson and Thorburn (2005).
Asymptotically, this estimator has (in a design-based sense) minimum vari-
ance among linear regression type estimators.

2.2 Calibration estimators under nonresponse

In the nonresponse case, a possible calibration estimator is

t̂

y cal

=
X

r

w

kr

y

k

,

where it should hold that X

r

w

kr

x

k

= X, (2)

where X =
P

U

x

k

, if the auxiliary information is known up to the population
level. Otherwise, X =

P
s

d

k

x

k

, the unbiased estimator of t

x

. (We can also
combine the two types of information in the constraint X.)
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Weights fulfilling the requirement (2) are presented by Särndal and Lund-
ström (2005). Using the direct approach, where all information is used in
one single calibration, we get

w

kr

= d

k

(1 + x

0
k

(
X

r

d

k

x

k

x

0
k

)�1(X �
X

r

d

k

x

k

) (3)

The resulting estimator will henceforth be denoted t̂

y cal

. Other approaches,
including two-step procedures, are presented and investigated by Särndal and
Lundström (2005) and Andersson and Särndal (2016).
A natural question to ask is: What is the underlying distance measure gener-
ating these weights? Särndal and Lundström (2005) do not comment on this
particular issue, but according to Lundström and Särndal (1999), we should
choose ”w

k

’as close as possible’ to the d

k

”, which does not seem quite ade-
quate under nonresponse. Going back to Lundström (1997) we will find that
the corresponding distance measure is actually

(w
r

� w0r

)0(w0r

I

nr)
�1(w

r

� w0r

),

where w

r

= (w
kr

)
k2r

and w0r

= (d
k

)
k2r

.
If we have a random mechanism generating the response set r from the sample
s with probabilities ✓

k

of inclusion, we can view the nonresponse situation as
a two-phase design. Then we should minimize the distance between w

kr

and
d

k

· (1/✓
k

). Using some modelling ✓

k

can be estimated by ✓̂

k

, to be put to use
for the distance minimization. However, we will not go in the direction of
model-based inference. In order to reduce the bias e↵ect under nonresponse
one could instead in the distance measure think of comparing w

kr

not with
d

k

, but with d

⇤
k

= d

k

· c, where c is a constant larger than 1, aiming to
compensate for the ”average” nonresponse e↵ect.
However, Lundström (1997) shows that for many interesting cases, namely
when one can find a vector µ for which µ

0
x

k

= 1, for all k, the multiplicative
increase in d

⇤
k

implies the same resulting calibration weights w

kr

. This follows
from the result that if µ

0
x

k

= 1, for all k, we can simplify the expression of
w

kr

as
w

kr

= d

k

x

0
k

(
X

r

d

k

x

k

x

0
k

)�1
X

Thus, we have an invariance property for the weights.
With this as a background we propose to use alternative ”optimal” weights
resulting from the distance measure

(w
r

� w0r

)0(
⇡

kl

� ⇡
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l

⇡
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⇡
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⇡
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leading to t̂

y opt

.
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As for the full response situation, there are cases for which the ”optimal”
weights are identical to (3), as e.g. under simple random sampling.
Using quotation marks around optimal is indeed deliberate, but under full
response optimal has a very clear meaning. As mentioned earlier, the opti-
mal regression estimator has asymptotically minimum variance among linear
regression estimators. Adding nonresponse where the nonresponse mecha-
nism is at least partially unknown, makes it di�cult (impossible?) to define
optimality criteria in a proper way.
In the following we will focus on a sampling design where generally t̂

y cal

6=
t̂

y opt

, namely Poisson sampling. The independence of drawings simplifies the
”optimal” distance measure:

X

r

⇡

2
k

1� ⇡

k

(w
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� d

k

)2 =
X

r

(w
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� d

k
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d

k

(d
k

� 1)

For this measure it might be fruitful to replace d

k

with d

⇤
k

. where we in-
clude in d

⇤
k

the reciprocal of an estimate of the average response probability

✓̄ =
P

U

✓

k

/N . One simple candidate is ˆ̄
✓ = n

r

/n

s

, thus yielding d

⇤
k

=

d

k

· (n
s

/n

r

). Another natural choice is ˆ̄
✓ =

P
r

d

k

/

P
s

d

k

, since E(
P

s

d

k

) = N

and E(
P

r

d

k

) =
P

U

✓

k

= N ✓̄, which lead to E(
P

r

d

k

/

P
s

d

k

) ⇡ ✓̄.
In a following simulation study we will examine these two examples of al-
ternative weightings, where the possible e↵ects on the bias of the resulting
calibration estimators are of special interest.
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