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Abstract: Outliers that commonly occur in business sample surveys can have large impacts on domain
estimates. The authors consider an outlier-robust design and smooth estimation approach, which can be
related to the so-called “Surprise stratum” technique [Kish, (1965)]. The sampling design utilizes a threshold
sample consisting of previously observed outliers that are selected with probability one, together with
stratified simple random sampling from the rest of the population. The domain predictor is an extension of
the Winsorization-based estimator proposed by Rivest and Hidiroglou (2004), and is similar to the estimator
for skewed populations suggested by Fuller. It makes use of a domain Winsorized sample mean plus a
domain-specific adjustment of the estimated overall mean of the excess values on top of that. The methods
are studied in theory from a design-based perspective and by simulations based on the Norwegian Research
and Development Survey data. Guidelines for choosing the threshold values are provided. The Canadian
Journal of Statistics 39: 147–164; 2011 © 2011 Statistical Society of Canada

Résumé: Il est fréquent d’observer des valeurs aberrantes dans les enquêtes d’entreprises et celles-ci peuvent
avoir des impacts majeurs dans les estimations d’un domaine. Les auteurs considèrent un plan de sondage
robuste par rapport à la présence de valeurs aberrantes et une approche d’estimation lisse qui peuvent être
reliées à la technique dite de la (voir Kish, 1965). Le plan de sondage utilise un échantillon à seuil qui
consiste à combiner toutes les valeurs aberrantes déjà observées à un échantillon aléatoire simple strat-
iflé pour le reste de la population. Le prédicteur du domaine est une généralisation de l’estimateur avec
regroupement frontalier proposé par Rivest et Hidiroglou (2004) et il est similaire à l’estimateur pour les
populations asymétriques suggéré par Fuller (1991). Il utilise la moyenne échantillonnage avec regroupe-
ment frontalier en plus d’un ajustement, spécifique au domaine, de la valeur estimée de la moyenne globale
des valeurs excédentaires. Ces méthodes sont étudiées théoriquement d’un point de vue du plan de sondage
et par des simulations basées sur les données provenant d’une enquete norvégienne sur la recherche et le
développement. Des recommandations pour choisir les valeurs de seuillage sont aussi proposées. La revue
canadienne de statistique 39: 147–164; 2011 © 2011 Société statistique du Canada

1. INTRODUCTION

In business sample surveys even if outliers do not affect aggregated estimates substantially,
their impact can be large for domain estimates. For repeated surveys, the estimate for a given
domain can vary greatly over time if outliers occur in the sample in some periods and not others,
causing volatility in the change estimate. Explicit model-based small area estimation techniques
that are robust towards the presence of outliers have begun to receive interest in the past few
years. Chambers and Tzavidis (2006) suggested the use of outlier-robust M-quantile models for
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small area estimation, and Sinha and Rao (2009) proposed robust empirical best linear unbiased
predictor (EBLUP) under the linear mixed models.

This study has been motivated by the existing practice in the yearly Norwegian Research and
Development Survey (NRDS). The NRDS sample consists of three parts: (1) a self-representing
(sub-) sample of the largest enterprises, covering about 80% of the R&D-total in the population;
(2) an additional self-representing threshold sample containing outliers identified in the previous
round of NRDS, that is, units with R&D-value exceeding a chosen threshold, covering just below
10% of the population R&D-total in most cases, and (3) a stratified simple random sample from
the rest of the population. Intuitively, the use of such a threshold sample seems sensible since
the pool of population outliers from which representative sample outliers might be drawn will be
reduced, provided the observed outliers tend to remain large in the following year. On the other
hand, one needs to be careful that the threshold sample does not get too large compared to the
probability sample; otherwise the estimation precision for the rest of the population may suffer
too much.

Moreover, one is concerned with a particular feature associated with the use of a threshold
sample. Consider, for example, an outlier that first turns up in the probability sample, which is
then placed in the threshold sample in the next round. Even if the unit has the same R&D-value
in both years, its contribution to the respective totals will be quite different due to the different
weights assigned to it. In other words, the in- and out-flows to the threshold sample may cause
instability even though the R&D-value itself is stable. While such “noise” may cancel out on an
overall level, the effects can be obvious at a disaggregated level. Thus, justifications on a more
theoretical basis are desirable in order to implement the threshold-sample design. In addition, an
estimation methodology that is able to control the influence of the probability-sample outliers at
the domain level will be useful.

We shall develop a domain estimator that is a prediction extension of the estimator proposed by
Rivest and Hidiroglou (2004). Like the threshold-sample design, this estimator can also be related
to the “Surprise stratum” technique (Kish, 1965, Section 12.6C). It is constructed as a domain
Winsorized sample mean plus a domain-specific adjustment of the estimated overall mean of the
excess values on top of that. The sum of these domain estimators is equal to the direct design-
unbiased population total estimator, under the assumption that outliers do not cause problems at
the aggregated level. Our domain estimators retain this feature. At the same time, our estimator
is similar to the estimator for skewed populations suggested by Fuller (1991). The difference
is that, whereas the Fuller’s estimator uses a robust estimator for the superpopulation mean,
we use a Winsorization-based estimator for the finite population mean outside of the observed
sample.

The domain outlier-robust design and the smooth estimation approach developed subsequently
in this paper have several important features that need to be made clear at once. Firstly, only strat-
ified simple random sampling in combination with a threshold sample will be considered, which
is typical in business survey applications. We shall not discuss complex sampling designs beyond
that. Secondly, the threshold-sample design relies heavily on a continuing survey environment,
in order to identify potential outliers on the basis of historical data. It is not applicable in a one-
off survey situation. Thirdly, the domains of interest are known in advance at the design stage,
such that direct design-based domain estimators would have been considered acceptable in the
absence of outliers. This is the reason that we shall maintain the design-based outlook, instead
of resorting to model-based small area estimation techniques. Fourthly, underlying the modified
Winsorization-based estimation methodology is the assumption that the outliers are able to desta-
bilize the domain estimators, but not the overall population estimator. (In the case of NRDS, the
largest units are already covered by the self-representing cut-in sample. The threshold-sample
design only deals with the remaining population, which is about 20% of the total of interest.)
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Hence, we shall describe the approach as smooth domain estimation, rather than outlier-robust
per se. Despite these limitations, however, we believe that this setting is relevant for enough
business survey applications to warrant its own treatment.

The rest of the paper is organized as follows. The threshold-sample design is studied in
theory in Section 2. In Section 3 we consider smooth domain estimation with and without the
presence of a threshold sample, and derive the design mean squared error (MSE). The design and
estimation approach is evaluated in Section 4 based on a synthetic population constructed using
the NRDS data. Conditions under which the approach can be made outlier resilient are described
and examined. Finally, a short summary is given in Section 5.

2. THRESHOLD SAMPLE DESIGN

The idea of surprise stratum is to include potentially large observations (i.e., outliers) in the
sample with probabilities that are higher than usual, so as to reduce the weights of these units
without introducing bias. In the extreme case where a potential outlier is selected with probability
one, it is converted from a representative outlier to a nonrepresentative one (Chambers, 1986),
and receives a unit weight in estimation. We define a threshold sample to contain all the sample
units that exceed a given value (i.e., threshold) in the previous survey. The threshold value itself,
though, can be changed from one time point to another. Moreover, we notice that outliers may
be cyclical or seasonal in certain populations, in which case one needs to be more careful and
alternative ways of defining the threshold sample should be explored. Below we first introduce
the necessary notations, and highlight the important factors for design efficiency through a simple
motivating example. We then focus on the comparison between simple random sampling (SRS)
with and without the use of a threshold sample for level estimation. Finally, we discuss how the
results can be applied to stratified SRS design and change estimation.

2.1. A Motivating Example
Consider the estimation of a population total given by Y = ∑

i∈U yi, where U = {1, 2, ..., N}
denotes the population and yi is the variable of interest for the ith unit. Denote by s a sample of
size n, regardless of the sampling design. Given the use of a threshold sample, let sA denote the
threshold sample of sizeA, and let sB = s/sA be a simple random sample of size n−A from the rest
of the population, denoted byUB = U/sA. Let R be the threshold value. LetU+ = {i∈U; yi ≥ R}
be of size N+, and U− = {i∈U; yi < R} of size N−. Similarly, let s+ = {i∈s; yi ≥ R} be of
size n+, and s− = {i∈s; yi < R} of size n− = n−n+. Given the use of a threshold sample, let
sA+ = {i∈sA; yi ≥ R} be of size A+, and sA− = {i∈sA; yi < R} of size A− = A−A+, such that
sB+ = {i∈sB; yi ≥ R} is of the size n+−A+ and sB− = {i∈sB; yi < R} is of the size n−−A−. An
illustration of the setting is given in Figure 1 below.

As a motivating example, consider the case where there are only two distinct y values in the
population: one below and one above the threshold value. Let Ŷ = N

∑
i∈s yi/n be the expansion

estimator given the SRS. Let Ỹ = ∑
i∈sA yi + (N−A)∑i∈sB yi/(n−A) be the estimator given the

Figure 1: An illustration of population and sample division by threshold value. Size in parenthesis.
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use of the threshold sample. Denote by V the sampling variance. It is easily verified that

V (Ỹ |A,A+)
V (Ŷ )

=
(
1−A
N

)−1(
1−A

n

)−1(
1−A+
N+

)(
1−A−
N−

)
(1)

It can be seen that the use of the threshold sample can be justified if A+ is sufficiently large
compared to N+. Thus, as a measure of the effectiveness of the threshold sample, we define the
catch rate to be

ξ = A+
A

A threshold sample is effective if the catch rate is high. Expression (1) shows that the ideal
is to use as small as possible a threshold sample to catch as many as possible outliers. However,
even the most effective threshold sample may not be helpful unless the outliers are “rare” enough.
This can be noted in the extreme case of ξ= 1, that is, A=A+ and A− = 0, where a necessary
condition for V (Ỹ |A,A+) < V (Ŷ ) is A/N+ > A/n, which amounts to

θ
def= N+/N < n/N

def= f

where θ is the prevalence of the outliers in the population, and f is the overall sampling fraction.
In practice, the prevalence θ can be reduced by choosing a larger threshold value. However,
raising the threshold value also affects the threshold sample size A and, potentially, the catch rate
ξ, causing changes to A+/N+ and A/n at the same time. To examine the design efficiency more
closely we need a general expression for the design effect.

2.2. Design Effect for Level Estimation

Let Ȳ = Y/N and � def= (N−1)σ2 = ∑
i∈U (yi−Ȳ )2. For Ŷ given the SRS, we have

V (Ŷ ) = N2

n

(
1− n

N

)
σ2 =

(
N

n

)(
N−n
N−1

)
� (2)

Let Ȳ+ = ∑
i∈U+ yi/N+ and Ȳ− = ∑

i∈U− yi/N−. Let σ2+ = ∑
i∈U+ (yi−Ȳ+)2/(N+−1)

and σ2− = ∑
i∈U− (yi−Ȳ−)2/(N−−1). We can rewrite � as

� =
∑
i∈U+

(yi−Ȳ+ + Ȳ+−Ȳ )2 +
∑
i∈U−

(yi−Ȳ− + Ȳ−−Ȳ )2

= (N+−1)σ2+ + (N−−1)σ2− + N+N−
N

(Ȳ+−Ȳ−)2 (3)

Next, let ȲB be the target mean in UB. Given the use of the threshold sample, the conditional
sampling variance of Ỹ given ψ = (A, ξ) can be obtained as

V (Ỹ |ψ) = E{V (Ỹ |sA)|ψ} + V {E(Ỹ |sA)|ψ}

where the outer conditional variance and expectation are with respect to sA given ψ, and
the inner conditional variance and expectation are with respect to sB given sA. We have
V {E(Ỹ |sA)|ψ} = 0 since E(Ỹ |sA) = Y . Moreover, V (Ỹ |sA) = (N−A)(N−n)σ2B/(n−A), where
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σ2B = ∑
i∈UB (yi−ȲB)2/(N−A−1). It can be shown that

V (Ỹ |ψ) =
(
N−A
n−A

)(
N−n

N−A−1

)
E(�B|ψ) (4)

where �B = (N−A−1)σ2B and, as shown in Appendix,

E(�B|ψ) = (N+−A+−a+)σ2+ + (N−−A−−a−)σ2− + (N+−A+)(N−−A−)
N−A (Ȳ+−Ȳ−)2 (5)

for a+ = 1−(A+/N+)(N−−A−)/(N−A), and a− = 1−(A−/N−)(N+−A+)/(N−A).
Dividing (4) by (2) we obtain the design effect of the threshold sample as

V (Ỹ |ψ)
V (Ŷ )

=
(
N−1
N

)(
N−A
N−A−1

)(
n

n−A
)
γ where γ = E(�B|ψ)

�
(6)

In practice we would mostly be concerned with the situations where the first two factors on the
right-hand side of (6) are close to unity. The third factor can be interpreted as a penalty term for
having only n−A free observations compared to n under SRS. The potential gain from using the
threshold sample comes from the last factor γ . We may compare its numerator and denominator,
given respectively by (5) and (3), term by term. The ratio of the multipliers is given, respectively,
as (N+−A+−a+)/(N+−1) ≈ 1−A+/N+ for σ2+, and (N−−A−−a−)/(N−−1) ≈ 1 for σ2−, and
(1−A/N)−1(1−A−/N−)(1−A+/N+) ≈ 1−A+/N+ for (Ȳ+−Ȳ−)2. Let

φ = (N−−1)σ2−/�

which represents the contribution to the variance of the non-outliers. Then we have γ ≈ φ +
(1−A+/N+)(1−φ), and an approximation of V (Ỹ |ψ)/V (Ŷ ) can be given by

α =
φ +

(
1−Aξ

Nθ

)
(1−φ)(

1−A
n

) (7)

The conditions that are generally favorable to the use of the threshold sample include a high
catch rate ξ, a low prevalence θ, and a small variance contribution φ from the non-outliers. The
effect of the threshold sample size A is not immediately clear. Given the parameters (ξ, θ, φ), the
numerator and denominator of γ change in the same direction as A changes. However, since the
“penalty” (1−A/n)−1 increases with A, one would be more concerned in practice when A gets
larger, say, from 1 year to the next. Notice that we have

∂α

∂A
=

θ−(1−φ)ξf
nθ(

1−A
n

)2
It follows that α is a monotone function of A provided A< n, and the design efficiency would

improve with increasing A if ∂α/∂A < 0, which amounts to

θ < (1−φ)ξf (8)

Moreover, since 1−φ≤ 1 as well as ξ≤ 1, a necessary condition for (8) is θ < f. Notice that
this is the same as observed in the special case earlier, where ξ= 1 and φ= 0. Provided that
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the condition (8) is true then the use of a threshold sample may yield protection against outliers
and improve the design efficiency, no matter how large (or small) it is compared to the overall
sample size. The necessary condition θ < f can always be achieved by choosing a sufficiently large
threshold value, which in return can be considered as a robust design choice.

2.3. Stratified SRS and Change Estimation
It is straight-forward to apply the threshold-sample design together with a stratified SRS design in
the NRDS, that is, among the rest of the population apart from the largest self-representing units.
Here, the domains are fixed in advance, and coincide with the design strata. Different threshold
values can be specified in different strata. The effect can be evaluated for each domain (i.e.,
stratum) on its own. Independence of the stratum total estimators makes it easy to evaluate the
potential gains for the population total estimation.

Sometimes, however, the domains of interest cut across the design strata. Suppose it is possible
to identify all the non-overlapping subsets of domains and strata. We may refer to each of these
as a domain stratum. Then, each domain total is given as the sum over a number of domain strata,
which are sampled independently of each other for a particular domain of concern. The results
above can be used to evaluate the threshold-sample design effect within each domain stratum
conditional on the realized domain-stratum sample sizes. The threshold value can still be set
differently in each stratum. The potential gains for the population total estimator can be obtained
by considering it as the total of independent stratum population total estimators.

The threshold-sample design effect can easily be applied to the estimation of change in two
special situations. In the first case, independent stratified random sampling is administered in two
time periods, after the self-representing units and the threshold-sample units have been removed
from the frame. This is actually the case in the NRDS. Without the use of the threshold sample,
the variance of the change estimator is the sum of the respective variance of each total estimator
(Tam, 1984).A similar result holds under the threshold-sample design, conditional on the threshold
sample configurationψ for the two periods. (The derivation is omitted here to avoid themany extra
notations needed, but is available from the authors on request.) It follows that the design effect
for the change estimator is completely determined by those of the two separate level estimators,
and the design efficiency for change estimation is improved provided it is improved for each level
estimation. In particular, provided this is the case, the use of threshold sample can be justified
despite the noise generated by the in- and out-flows to the threshold sample mentioned earlier.

In the second case, the same sample (i.e., a panel) is used for a number of successive time
periods, as for example, in short-term business surveys. It is then natural that the threshold sample
units, once chosen, are also held fixed throughout the same periods. The variance formulae (2)
and (4) can be applied directly to any change variable, say, zi = yi,t=2−yi,t=1 for period t= 1 and
t= 2, and so on. However, notice that the design threshold value will not be a threshold for the
target change variable in this case, that is, a unit above the threshold criterion does not necessarily
have a target value z that is greater than a unit below the threshold criterion. The construction of
the threshold sample therefore requires more careful consideration.

3. SMOOTH DOMAIN ESTIMATION

An outlier unit in the threshold sample is assigned a unit weight and is hence nonrepresentative.
The ability to control the undue influence of the probability-sample outliers, that is, representative
outliers, at the domain level is essentially a property of the estimation methodology. Below we
describe a Winsorization-based smooth domain estimation approach, both with and without the
use of a threshold-sample design. Like the threshold-sample design, the implementation relies
heavily on a continuing survey environment to provide pre-fixed smoothing adjustments based
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on historic data. Essential to the proposed approach is the assumption that outliers do not cause
a problem at the overall population level, so that smoothing between the domain total estimates
is able to provide sufficient outlier-resilience at the domain level.

3.1. Under Within-Domain SRS
Let h = 1, ..., H be the domains of interest. Let yhi be the value of interest associated with unit i
in domain h. Let Rh be a fixed threshold value for the hth domain. Let

zhi = min(yhi, Rh) and dhi = max(0, yhi−Rh)

where zhi is the Winsorized value and dhi is the excess value, such that yhi ≡ zhi + dhi. Let
Ȳh = ∑

i∈Uh yhi/Nh, where Uh is domain population and Nh is the domain population size.
Let Z̄h = ∑

i∈Uh zhi/Nh and D̄h = ∑
i∈Uh dhi/Nh. Let N = ∑

h Nh and Wh = Nh/N. Let Ȳ =∑
h

∑
Uh
yhi/N = ∑

h WhȲh, and Z̄ = ∑
h WhZ̄h, and D̄ = ∑

h WhD̄h.
Assume within-domain SRS, that is, stratified SRS from the population where the strata are

the domains of interest. An unbiased estimator of Ȳh is ˆ̄Yh = ȳh = ∑
i∈sh yhi/nh, where sh is the

domain sample and nh is the domain sample size. However, ˆ̄Yh can have a large variance due to
the sample outliers. Rivest and Hidiroglou (2004) proposed the following domain estimator

ˆ̄Y
R

h = z̄h + λh ˆ̄D (9)

where ˆ̄D = ∑
h Whd̄h, and z̄h and d̄h are the respective domain sample means, and λh is a pre-

fixed smoothing adjustment such that
∑
h Whλh = 1. It follows that

∑
h Wh

ˆ̄Y
R

h = ∑
h Wh

ˆ̄Yh,

that is, the sum ofNh ˆ̄Y
R

h over the domains coincide with that ofNh ˆ̄Yh. Moreover, ˆ̄Y
R

h tends to ˆ̄Yh
as all Rh → ∞, whereas it tends to the synthetic estimator λh

∑
g Wgȳg = λh ˆ̄Yh as all Rh → 0.

The idea is to achieve a sensible trade-off between the potential bias against the reduced variance
through the choice of Rh and λh, so that ˆ̄Y

R

h may improve on ˆ̄Yh in terms of the MSE. Notice that,

for fixed λh in (9), each ˆ̄Y
R

h depends on a linear combination of all the outlier excesses. Extreme
representative outliers may in fact have unbounded influence on all the domain estimates. We
shall therefore refer to the approach as smooth domain estimation, where it is essential that ˆ̄D is
considered acceptable despite the presence of representative outliers.

Rivest and Hidiroglou (2004) set λh = rhU/
∑
g WgrgU , where rhU is the interquartile range

of yhi for i∈Uh based on historic data. In the NRDS, however, the overall proportion of units with
positive R&D-value is only around 20% in the population excluding the self-representing units,
such that the interquartile range is zero or trivially small in many domains. More generally, we
notice that, under the stratified SRS design, the bias of ˆ̄Y

R

h is given by E( ˆ̄Y
R

h )−Ȳh = λhD̄−D̄h.
We therefore propose to aim directly at

λh = D̄h

D̄
(10)

In this way the choice of λh becomes connected with that of Rh. Rivest and Hidiroglou (2004)
setRh = max{Ȳh + βnh/(nWh), 0}, for a global choice ofβwith respect to aMSE-based criterion.
But this requires absolute assessment of the current Ȳh, which one may be unwilling to make. In
practice, the choice of Rh is likely to be based on historic data, probably involving some form of
averaging over several periods. The emphasis will be on smoothness over time. We shall explore
the choice of the threshold values in Section 4.
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Sometimes, however, a domain may cut across the design strata. Suppose it is possible to
identify all the domain strata (as defined earlier) within each domain. One would then replace
z̄h in (9) by a corresponding weighted sum of the Winsorized domain-stratum sample means
involved. Both the threshold value Rh and the smoothing adjustment λh can still be set directly
for each domain of interest, whereas the overall excess mean estimator ˆ̄D can be obtained as the
weighted sum of all the domain-stratum sample excess means. Of course, it is also possible to set
the threshold value and the smoothing adjustments for each design stratum, and then build up the
domain estimator through the domain strata. We shall not go into the details here.

A drawback of ˆ̄Y
R

h is that it is generally not equal to Ȳh even when fh = nh/Nh = 1. We shall
instead adopt a prediction form of the estimator (9) given by

ˆ̄Y
P

h = fhȳh + (1−fh) ˆ̄YRPh (11)

where smooth domain estimation, that is, ˆ̄Y
RP

h , is only applied to the population outside of the
sample. Let f= n/N and ˆ̄D = ∑

h Whd̄h as before. Let d̄ = ∑
h whd̄h and wh= nh/n. We have

ˆ̄Y
RP

h = z̄h + λPh
ˆ̄D(s)

ˆ̄D(s) = (N ˆ̄D−d)/N = ˆ̄D−f d̄
λPh = λh/(

∑
g

Wg(1−fg)λg)

Notice that we have
∑
h Whfhd̄h = f

∑
h whd̄h = f d̄ and

∑
h Wh(1−fh)λPh = 1, such that

∑
h

Wh
ˆ̄Y
P

h =
∑
h

Wh{ȳh−(1−fh)d̄h + (1−fh)λPh ˆ̄D(s)} = ˆ̄Y− ˆ̄D+ f d̄ + ˆ̄D(s) = ˆ̄Y

that is, the sum of Nh ˆ̄Y
P

h over the domains coincide with that of Nh ˆ̄Yh, just as ˆ̄Y
R

h .
We notice that the domain estimator (11) is similar to the Fuller’s estimator (Fuller 1991,

Equation (7.3)) for skewed populations, which is given as a weighted sum of the observed sample
mean and a robust estimator of the superpopulation mean, where the weights are determined by
the sampling fraction. The combined estimator is shown to be a minimum MSE estimator of the
finite population mean under a model-based framework, provided a minimum MSE estimator of
the superpopulation mean is being used. The difference is that ˆ̄Y

RP

h in (11) is a Winsorization-
based estimator directed at the population outside of the observed sample, the choice of which is
motivated by the design-unbiasedness at the overall population level.

The bias of ˆ̄Y
P

h is given by E( ˆ̄Y
P

h )−Ȳh = (1−fh)(λPh D̄(s)−D̄h), where

D̄(s) = D̄−f
∑
h

whD̄h = D̄−
∑
h

WhfhD̄h =
∑
h

Wh(1−fh)D̄h

Thus, ˆ̄Y
P

h is unbiased provided

λPh = D̄h

D̄(s)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2011 A DOMAIN OUTLIER ROBUST DESIGN AND SMOOTH ESTIMATION APPROACH 155

which is true if λh = D̄h/D̄, so that aiming λh at D̄h/D̄ remains plausible for ˆ̄Y
P

h . To obtain the

variance of ˆ̄Y
P

h , we write ˆ̄D(s) = ∑
h W

′
hd̄h forW

′
h = Wh−whf , and

ˆ̄Y
P

h = ȳh−(1−fh)(1−λPhW ′
h)d̄h + (1−fh)λPh

∑
g 
=h

W ′
gd̄g

It follows that the MSE of ˆ̄Y
P

h is given by

MSE( ˆ̄Y
P

h ) = (1−fh)2(λPh D̄(s)−D̄h)2 + (1−fh)σ2x,h/nh + (1−fh)2
∑
g 
=h

(λPhW
′
g)

2(1−fg)σ2d,g/ng
(12)

where xhi = yhi−(1−fh)(1−λPhW ′
h)dhi and σ

2
x,h is the domain finite-population variance of xhi.

Notice that the MSE expression does not allow for post-sample tuning of λh.

3.2. Within-Domain SRS Given Threshold Sample
Given the use of a threshold sample, it is natural to condition on the observed threshold sample
total, and to apply domain prediction (11) to the population outside of the threshold sample. The
estimator of the domain population mean is then given by

ˆ̄Y
AP

h = fhAȳhA + (1−fhA) ˆ̄YPhB (13)

where ȳhA is the mean of the within-domain threshold sample shA and fhA = nhA/Nh. The
estimator ˆ̄Y

P

hB is obtained by applying the estimator (11) to the domain population outside of shA

ˆ̄Y
P

hB = fhBȳhB + (1−fhB)(z̄hB + λPhB
ˆ̄D(s)B) (14)

where ȳhB is the mean of the within-domain probability sample sh,B, and fhB = nhB/NhB and
NhB = Nh−nhA is the corresponding population size, and

λPhB = λh/(
∑
h

WhB(1−fhB)λh)
ˆ̄D(s)B = ˆ̄DB−fBd̄B = ∑

h

W ′
hBd̄hB

whereWhB = NhB/NB for NB = N− ∑
h nhA, and ˆ̄DB = ∑

h WhBd̄hB for domain probability-
sample mean d̄hB, and W ′

hB = WhB−fBwhB for fB = nB/NB = ∑
h nhB/NB and whB =

nhB/nB. Notice that, since ˆ̄Y
P

hB is derived conditional on the actual threshold sample, the threshold
value for estimation can be set independently from the threshold value for the sampling design.
For simplicity, however, we have chosen not to make an explicit distinction in the notation. Notice
also that the similarity between (11) and Fuller’s estimator is retained in (13).

Given sA = ∪Hh=1shA, we have E(ȳhB|sA) = ȲhB and E(d̄hB|sA) = D̄hB, such that

E( ˆ̄Y
AP

h |sA) = Ȳh + (1−fhA)(1−fhB)(λPhBD̄(s)B−D̄hB)

where D̄(s)B = ∑
h W

′
hBD̄hB. Let ψ = {(Ah, ξh);h = 1, ..., H} where Ah= nhA. Since the total

excess value is 0 among the units below the threshold by definition, we have DhB = DhB+ =
Dh+−dhA+ = Dh−dhA, where dhA is the total excess value in sA, and dhA+ is that of the
units in sA that are above the threshold value, and similarly for DhB+ and Dh+. Given (Ah,
ξh), we have E(D̄hB|ψ) = (1−fhA+)Dh/NhB, where fhA+ = Ah+/Nh+, and Ah+ = Ahξh,
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and Nh+ is the within-domain number of units above the threshold, such that E(D̄(s)B|ψ) =∑
h W

′
hB(1−fhA+)Dh/NhB. The bias of ˆ̄Y

AP

h conditional on ψ is then given as

E( ˆ̄Y
AP

h |ψ)−Ȳh = (1−fhA)(1−fhB){λPhBE(D̄(s)B|ψ)−E(D̄hB|ψ)} (15)

The variance of ˆ̄Y
AP

h conditional on ψ can be given as

V ( ˆ̄Y
AP

h |ψ) = E{V ( ˆ̄YAPh |sA)|ψ} + V {E( ˆ̄YAPh |sA)|ψ} (16)

For the first term on the right-hand side of (16), we write

ˆ̄Y
AP

h = fhAȳhA + (1−fhA){ȳhB−(1−fhB)(1−λPhBW ′
hB)d̄hB +

∑
g 
=h

(1−fhB)λPhBW ′
gBd̄gB}

= fhAȳhA + (1−fhA)x̄hB +
∑
g 
=h

(1−fhA)(1−fhB)λPhBW ′
gBd̄gB

where x̄hB is the probability-sample average of xhi = yhi−(1−fhB)(1−λPhBW ′
hB)dhi. Conditional

on sA, ȳhA is a constant, whereas x̄hB is independent of d̄gB for h 
= g. We have

V (x̄hB|sA) = (1−fhB)σ2x,hB/nnB and V (d̄gB|sA) = (1−fgB)σ2d,gB/ngB

where σ2x,hB and σ2d,gB are, respectively, the within-domain finite-population variances of xhi and
dgi outside of sA. By derivations similar to those that result in (4), we obtain

E{V ( ˆ̄YAPh |sA)|ψ)} = (1−fhA)2chBE(�x,hB|ψ)
+

∑
g 
=h

((1−fhA)(1−fhB)λPhBW ′
gB)

2cgBE(�d,hB|ψ) (17)

where chB = (1−fhB)/(nhB(NhB−1)) = (Nh−nh)/(nhBNhB(NhB−1)) for h = 1, ..., H , and
E(�x,hB|ψ) and E(�d,hB|ψ) can be obtained in a similiar way to E(�B|ψ) in (5), but are now
domain indexed and with respect to xhi and dhi. For instance, we have

E(�x,hB|ψ) = (Nh+−Ah+−ah+)σ2x,h+ + (Nh−−Ah−−ah−)σ2x,h−
+ (Nh+−Ah+)(Nh−−Ah−)

Nh−Ah (X̄h+−X̄h−)2

for ah+ = 1−(Ah+/Nh+)(Nh−−Ah−)/(Nh−Ah) and ah− = 1−(Ah−/Nh−)(Nh+−Ah+)/
(Nh−Ah), and X̄h+ and σ2x,h+ are the finite-population mean and variance of xhi in Uh+, and
X̄h− and σ2x,h− those in Uh−. For the second term on the right-hand side of (16), we write

E( ˆ̄Y
AP

h |sA) = Ȳh + (1−fhA)(1−fhB)(λPhBW ′
hB−1)D̄hB +

∑
g 
=h

(1−fhA)(1−fhB)λPhBW ′
gBD̄gB

The variance of D̄hB conditional on ψ is independent of D̄gB for g 
= h, and is given as

V (D̄hB|ψ) = N−2
hBV (Dh−dhA|ψ) = N−2

hBV (dhA|ψ) = N−2
hBV (dhA+|ψ) = N−2

hB κhσ
2
d,h+
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where κh = Ah+(Nh+−Ah+)/Nh+ for Ah+ = Ahξh, and σ2d,h+ is the within-domain finite-
population variance of dhi in Uh+. We obtain, then,

V {E( ˆ̄YAPh |sA)|ψ} = ((1−fhA)(1−fhB)(λPhBW ′
hB−1))2N−2

hB κhσ
2
d,h+

+
∑
g 
=h

((1−fhA)(1−fhB)λPhBW ′
gB)

2N−2
gB κgσ

2
d,g+ (18)

The MSE of ˆ̄Y
AP

h can now be obtained by (15) and (16), where (16) is obtained from (17)
and (18).

4. AN EVALUATION

In this section we investigate the performance of the threshold-sample design and the smooth
domain estimation procedure, using a synthetic population constructed based on the NRDS data.
It also serves as an illustration of the type of analysis that one would carry out in order to apply
the design and estimation approach. The main findings can be summarized as follows:

• The condition (8) can be expected to provide correct indication for the performance of the
threshold-sample design. Targeting a sufficiently low global value of the outlier prevalence θ
leads naturally to reasonable domain-specific threshold values. Too low a choice of the value of
the prevalence, however, may lead to empty threshold sample in many domains and, thereby,
loss of potential gains of the threshold-sample design there.

• Similarly, targeting a global value of θ can be used to generate reasonable domain-specific
threshold values for smooth domain estimation. The prevalence can be set higher than that for
the design of the threshold samples, provided plausible values of λh can be obtained based on
historic data. In cases where the uncertainty about the values of λh is greater, however, a lower
value of θ can be used to reduce the sensitivity of the domain estimators.

• The efficiency gains from the threshold-sample design may be small compared to those of the
estimation methodology, provided the latter can be tuned appropriately in practice. However,
the threshold-sample design can be made robust in a simple manner, such that the potential
gains are easily achieved, including that for the population total estimator.

4.1. Data and Set-Up
Asmentioned earlier, theNRDS contains a self-representing sub-sample of the largest enterprises,
a threshold sub-sample and a probability sub-sample from the rest of population. Table 1 provides
a summary of the NRDS sample in 2003. The threshold sub-sample contains 187 units, where
158 of them have an R&D-value above the threshold value. This yields a catch rate of 84.5%,
much higher than the other two sub-samples. Moreover, the average R&D-value in the threshold
sub-sample (i.e., 5.310× 106) is rather close to the average among the self-representing units (i.e.,
5.576× 106), and is much higher than that among the randomly selected units (i.e., 0.432× 106).
Both of these seem to support the use of the threshold sample in the NRDS.

For a detailed evaluation we constructed a synthetic population for two successive years,
denoted by t= 1 and 2, based on the NRDS data in 2003 and 2004 excluding the self-representing
units. The population consists of 9,734 units, that is,N= 9,734, divided into 55 industrial domains,
that is, H= 55. The domain sampling fractions are set similiar to the NRDS, giving a fixed total
sample size of 2,379, that is, n= 2,379, on each occasion including the threshold sample. Figure
2 contains boxplots of Nh, fh= nh/Nh, θh=Nh+/Nh for t= 1 and t= 2, where the prevalence θh
is calculated with respect to a global reference threshold value R0 = 1× 106 here.
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Table 1: Self-representing, threshold and probability sub-samples of NRDS 2003.

Number of Units R&D-Value (×106)

Sub-Sample Total Above Threshold Catch Rate (%) Total Average

Self-representing 1,737 558 32.1 9,685 5.576

Threshold 187 158 84.5 993 5.310

Probability 2,510 228 9.1 1,085 0.432

For the subsequent evaluation in this paper we would like to vary the threshold value as well
as the catch rate. The domain threshold sample sizes at t= 1 are set in two steps as follows. First, a
reference value Ah+,t=1(R0) is chosen for t= 1 that corresponds to the reference threshold value
Rh=R0, that is, the number of units in the domain threshold sample that are above the reference
threshold valueR0 at t= 1. For a given theoretical catch rate ξ, the corresponding domain threshold
sample size at t= 1 is then given by Ah,t=1(R0, ξ) = Ah+,t=1(R0)/ξ. Next, for any other choice
of Rh, we calculate the corresponding Ah+,t=1(Rh) by

Ah+,t=1(Rh)/Nh+,t=1(Rh) = Ah+,t=1(R0)/Nh+,t=1(R0)

whereNh+,t=1(Rh) is the number of units above the threshold value Rh in the domain population.
For a given theoretical catch rate ξ, we obtain Ah,t=1(Rh, ξ) = Ah+,t=1(Rh)/ξ as before. The

Figure 2: Boxplot of the synthetic population. N, Domain population size. n/N, Domain sampling fraction.
Theta (t= 1), domain outlier prevalence at t= 1 corresponding to global threshold value R0 = 1× 106. Theta

(t= 2), domain outlier prevalence at t= 2 corresponding to global threshold value R0 = 1× 106.
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threshold sample size for t= 2 is set at its expectation, which is given by

Ah,t=2(Rh, ξ) = Ah+,t=1(Rh) + (nh−Ah,t=1(Rh, ξ))
Nh+,t=1(Rh)−Ah+,t=1(Rh)

Nh−Ah,t=1(Rh, ξ)

Also the number of units above the threshold value at t= 2 is set at its expectation, given by

Ah+,t=2(Rh, ξ) = min{Nh+,t=2(Rh), Ah,t=2(Rh, ξ)Nh++(Rh)/Nh+,t=1(Rh)}

that is, subject to the constraint of Ah+ ≤ Nh+, where Nh++(Rh) is the number of units above
the threshold value on both occasions. Notice that, after rounding, the actual catch rates are given
by Ah+,t/Ah,t . These are used in the calculations instead of the theoretical value ξ.

4.2. Design Effect
Table 2 contains selected results concerning the relative efficiency (RE) of the threshold-sample
design, for alternative settings of the theoretical catch rate ξ and the domain threshold values Rh.
The following observations seem worth noting.

Firstly, the condition (8) can be expected to provide correct guideline in a given domain h if
REh < 1 and θh < (1−φh)ξhfh, or if REh≥ 1 and θh ≥ (1−φh)ξhfh. Let Ih= 1 if this is the case
and Ih= 0 if it is not. The results in Table 2 show that the condition works well. Take, for example,
the results obtained at Rh= 5× 106 and ξ= 0.8. The condition (8) is expected to provide correct
guidance in all the domains since

∑
h Ih = 55 = H for both t= 1 and t= 2. By comparison the

condition fails in two domains for t= 1whenRh= 1× 106, where
∑
h Ih = 53 = H−2, although

this undoubtedly would still be very valuable in practice.
Secondly, there is the choice of the threshold value. A convenient approach is to setRh at some

global choice, that is, Rh=R. The results obtained at Rh= 1× 106 and Rh= 5× 106, where ξ is
set at 0.8 in both cases, suggest that the choice of Rh= 5× 106 is more efficient for the population
total estimation, at both time points as well as for change. It is also more robust. Across the
domains, Rh= 1× 106 results in a wider range of REh, where, for example, the maximum value
of REh for t= 1 is 1.35 with Rh= 1× 106 and 1 with Rh= 5× 106. Indeed, given a high threshold
value, a threshold sample is worse off than pure SRS only if it is apparently ineffective. For
instance, there are three domains with REh > 1 at t= 2 when Rh= 5× 106, and all of them have
Ah+ = ξh = 0 and Ah= 2. Such cases are easily detected in light of the condition (8).

While raising the threshold value improves outlier resilience, too high a threshold value will
eventually result in an empty threshold sample, thus keeping one away from the possible gains
of the threshold sample. For instance, there are 21 domains with REh < 1 at Rh= 1× 106 and
ξ= 0.8, whereas there are only 12 domains with REh < 1 when Rh= 5× 106, because many
domains have in fact no threshold sample at all in the latter case. As an alternative to a global
choice of Rh=R, we consider the strategy of setting Rh such that the resulting domain prevalence
θh (averaged over the 2 years here) is as close as possible to a global choice of θ, denoted by
Rh(θ). Using these domain-specific threshold values Rh(θ), one seems to be able to make more
out of the threshold-sample design, while maintaining its robustness. For instance, given the
same effectiveness at ξ= 0.8, the overall efficiency is quite similar using Rh(θ) for θ= 0.05 or
Rh= 5× 106. However, the threshold-sample design performs better for domain estimation using
Rh(θ) for θ= 0.05: the range of REh is shifted towards 0, and the number of domains with REh < 1
is increased. To be sure, the domains with REh > 1 at t= 2 when using Rh(θ) for θ= 0.05 are
all apparently ineffective, all of them having Ah+ = ξh = 0 and 1 ≤ Ah ≤ 3. Thus, the use of
Rh(θ) for a sufficiently low value of θ and keeping control of the condition (8) can provide a
practical approach to the threshold-sample design. The strategy is both easier to understand and
to implement than completely free individual choice of each Rh.
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Table 2: Effect of threshold sample for alternative settings of theoretical catch rate ξ and threshold value.

Level at t= 1 Level at t= 2 Change

Threshold value Rh = 1×106; theoretical catch rate ξ= 0.5

RE 1.04 0.95 1.01

(25%, 50%, 75%) Quantiles of θh,t (0.03, 0.09, 0.18) (0.01, 0.07, 0.17) —

Summary condition
∑

h
Ih 53 55 —

(Min, median, max) of REh (0.80, 1, 1.48) (0.02, 0.90, 1.39) (0.68, 0.96, 1.45)

# (REh < 1, REh = 1, REh > 1) (11, 31, 13) (34, 9, 12) (34, 9, 12)

(Median, max) of ξh given REh > 1 (0.5, 0.5) (0.33, 1) —

Threshold value Rh = 1×106; theoretical catch rate ξ= 0.8

RE 1.00 0.95 0.98

(25%, 50%, 75%) Quantiles of θh,t (0.03, 0.09, 0.18) (0.01, 0.07, 0.17) —

Summary condition
∑

h
Ih 53 55 —

(Min, median, max) of REh (0.02, 1, 1.35) (0.02, 0.89, 1.57) (0.02, 0.93, 1.44)

# (REh < 1, REh = 1, REh > 1) (21, 26, 8) (34, 7, 14) (38, 7, 10)

(Median, max) of ξh given REh > 1 (0.71, 0.8) (0, 1) —

Threshold value Rh = 5×106; theoretical catch rate ξ= 0.8

RE 0.95 0.78 0.88

(25%, 50%, 75%) Quantiles of θh,t (0, 0.02, 0.04) (0, 0.01, 0.04) —

Summary condition
∑

h
Ih,t 55 55 —

(Min, median, max) of REh (0.54, 1, 1) (0.01, 1, 1.07) (0.49, 1, 1.01)

# (REh < 1, REh = 1, REh > 1) (12, 43, 0) (26, 26, 3) (26, 26, 3)

(Median, max) of ξh given REh > 1 — (0, 0) —

Threshold value Rh (θ) for θ= 0.05; theoretical catch rate ξ= 0.8

RE 0.93 0.79 0.87

(25%, 50%, 75%) Quantiles of θh,t (0.03, 0.05, 0.07) (0.00, 0.03, 0.05) —

Summary condition
∑

h
Ih,t 55 55 —

(Min, median, max) of REh (0.02, 1, 1) (0.01, 0.80, 1.08) (0.02, 0.88, 1.02)

# (REh < 1, REh = 1, REh > 1) (23, 32, 0) (36, 9, 10) (40, 9, 6)

(Median, max) of ξh given REh > 1 — (0, 0) —

Threshold: global value Rh =R or domain specifc value Rh(θ) for global choice of x.

Finally, for the efficiency of the threshold-sample design we would like the catch rate ξh =
Ah+/Ah to be as high as possible. However, given Rh, ξh is determined solely by the dynamics
in the population, and is a characteristic that is beyond the control of the survey statistician. The
experience from the NRDS showed that the overall catch rate could be maintained at around
ξ= 0.8 over time. However, it is important to explore the possible damages if the catch rate drops.
How the domain threshold sample design varies with different values of ξ, in order to compute
the results in Table 2, has been described previously in Section 4.1. Compare the results obtained
at ξ= 0.5 and ξ= 0.8, both at Rh= 1× 106. There is a noticeable loss of efficiency at t= 1 from
ξ= 0.8 to ξ= 0.5, both in terms of the overall RE and the domain-wise REh. Of course, a reduction
of the catch rate from 0.8 to 0.5 is rather dramatic, and one should have been alerted in advance
provided the catch rates are closely monitored over time.
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4.3. Estimation Effect
To examine the effect of the estimation methodology on its own, we assume within-domain SRS,
and calculate the RE as theMSE ratio between ˆ̄Y

P

h given by (11) and the direct estimator ˆ̄Yh = ȳh.
There will be no overall effect here now that the two agree with each other at the population total
level. As explained earlier, setting λh according to (10) leads to unbiased domain estimation. We
shall refer to the corresponding value of λh as the unbiased choice. In reality, deviation from the
unbiased choice is necessarily the case. Sensitivity of the smooth estimator (11) depends on how
well it performs as λh deviates from the unbiased choice.

We carry out the following simulations. For each setting of {Rh;h = 1, ..., H}, we calculate
the corresponding unbiased choices, denoted by λ(0)h for h = 1, ..., H . At each simulation b for
b = 1, ..., B, we generate independent λ(b)h ∼ N(λ(0)h , τλ

(0)
h ) where τ is the relative standard devi-

ation (RSD) of λ(b)h over the simulations, that can be controlled by the simulation design. We
then calculate the RE of the corresponding domain estimators, denoted by RE(b)

h , and evaluate
the minimum, median, and maximum value of RE(b)

h among h = 1, ..., H , and the number of
domains where RE(b)

h < 1, =1 or >1, respectively. Table 3 gives the minimum, median, and
maximum values of these summary statistics over the simulations for t= 1. The results for t= 2
are similar and those for the change can be derived from the two time points; the details are omit-
ted here. For instance, with Rh= 1× 106 and τ = RSD(λh) = 20% and B= 500, the minimum
value of minhRE

(b)
h over some 500 simulations is seen to be 0.079, whereas the maximum value

of minhRE
(b)
h over these 500 simulations is seen to be 0.148. That is,

min
b=1,...,B

{ min
h=1,...,H

RE(b)
h } = 0.079 and max

b=1,...,B
{ min
h=1,...,H

RE(b)
h } = 0.148

While these two values represent, respectively, the best and worst case of minhREh under the
given setting of Rh and τ, the median value roughly corresponds to the expected case of minhREh
where λh is set at the unbiased choice. The other summary statistics can be viewed similiarly.

The following observations are worth noting from Table 3. First of all, the use of smooth
domain estimation apparently yields much greater efficiency gains than the use of threshold-
sample design. Compare, for example, the results under Rh= 1× 106 in Table 3 with those under
Rh= 1× 106 in Table 2 for t= 1 and at ξ= 0.8. The median REh by smooth estimation lies
between 0.3 and 0.4 while that by threshold-sample design is 1; the number of domains with
REh < 1 varies between 45 and 48 by estimation, whereas that by design is only 21. Similar
improvements can be observed under the other settings. Next, the results under Rh= 1× 106 and
Rh= 5× 106 suggest apparently that a lower threshold value is more efficient than a higher one,
because it leads to smaller domain variances of the Winsorized values z̄hi. However, notice that
this holds only if plausible values of λh are obtainable, in which case variance reduction can be
achieved without much increase in the bias and, hence, gains in the MSE. Notice also that domain
estimation appears less sensitive at a higher global threshold value. For instance, in the worst
case the maximum REh can be as high as 3.362 under Rh= 1× 106, compared to 1.046 under
Rh= 5× 106. Similar comparisons can bemade between Rh(θ) for θ= 0.2 and θ= 0.05. Thus, the
threshold values should be set higher as the uncertainty surrounding the unbiased choices of λh
increases. Finally, using domain-specific Rh seems preferable to setting a global threshold value.
For instance, the median of REh under Rh(θ= 0.2) is close to that under Rh= 1× 106, while the
worst case of maxhREh is 1.433 compared to 3.362 under Rh= 1× 106. Moreover, when the
threshold values Rh(θ) are raised from θ= 0.2 to θ= 0.05, the sensitivity is reduced, while the
efficiency losses are not as big as when Rh= 1× 106 is raised to Rh= 5× 106.
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Table 3: Robust domain estimation at t= 1 over 500 simulations.

Summary of REh Number of Domains

Summary Over Simulations Minimum Median Maximum REh < 1 REh = 1 REh > 1

Threshold value Rh = 1× 106; RSD(λh) = 20%

Minimum 0.079 0.330 1 45 7 0

Median 0.087 0.344 1 48 7 0

Maximum 0.148 0.403 3.362 48 7 3

Threshold value Rh = 5× 106; RSD(λh) = 20%

Minimum 0.234 0.666 1 37 17 0

Median 0.235 0.670 1 38 17 0

Maximum 0.253 0.716 1.046 38 17 1

Threshold value Rh(θ) for θ= 0.05; RSD(λh) = 20%

Minimum 0.109 0.436 1 47 8 0

Median 0.119 0.447 1 47 8 0

Maximum 0.172 0.503 1 47 8 0

Threshold value Rh(θ) for θ= 0.2; RSD(λh) = 20%

Minimum 0.086 0.323 1 46 7 0

Median 0.094 0.356 1 48 7 0

Maximum 0.141 0.413 1.433 48 7 2

Threshold value: globalRh =R or domain specificRh(θ). RSD(λh), relative standard deviation around the unbiased
choice.

In practice, the values of λh will most likely be adjusted based on historic data and monitored
closely over time. Small area estimation techniques targeting unbiased choices of λh may also be
employed in this respect, using historic or current data. For instance, a Fay–Herriot type area-level
model (e.g., Rao 2003, Chapter 5) may be fitted to obtain estimates of λh. A particular advantage
of doing this is that a measure of uncertainty of the estimated λh can be obtained explicitly. Such a
measure would provide a valuable indication of the potential deviation from the unbiased choice.
As noted above, when there is greater uncertainty about the unbiased values of λh, the threshold
values should be set relatively higher.

4.4. Combined Design and Estimation Approch
Combining the threshold-sample design and smooth domain estimation does not pose any extra
challenges in theory. According to (13), domain estimation is applied to the rest of the population
outside of the threshold sample. Conditional on the threshold sample, the design effect and the
estimation effect will enhance each other, and are in this sense additive. Table 4 illustrates the RE
of the combined approach against direct estimation ˆ̄Yh = ȳh based on within-domain SRS alone,
at t= 1 for alternative settings of the threshold values and for theoretical catch rate ξ= 0.8 and λh
given by (10). The combined gains of efficiency are as expected when compared to Tables 2 and
3. The situation is similar for level estimation at t= 2 and change estimation. Notice that, since
smooth domain estimation has no effect for the population total estimator, the performance of the
combined approach at that level is entirely determined by the corresponding design effect.

There are, nevertheless, some practical issues that need to be decided on. First of all, there is
the question of whether or not to use the combined approach. On the one hand, the design effects
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Table 4: Combined use of threshold-sample design and smooth domain estimation at t= 1.

Summary of REh Number of Domains

(ξ= 0.8)

Threshold Value Minimum Median Maximum REh < 1 REh = 1 REh > 1

Rh = 1× 106 0.080 0.287 1 50 5 0

Rh = 5× 106 0.221 0.640 1 42 10 3

Rh(θ) for θ= 0.05 0.107 0.421 1 49 6 0

Rh(θ) for θ= 0.2 0.086 0.317 1 50 5 0

may be small compared to the estimation effects. On the other hand, the threshold-sample design
can be made robust in a simple manner, such that the potential gains are easily achieved. Next,
there is the freedom to choose different threshold values at the design and estimation stages. On
the one hand, extra gains of efficiency can be expected if the two sets of threshold values are
chosen separately. On the other hand, to use a single set of threshold values is easier to manage
and, as the results in Table 4 suggest, may be able to achieve much of the efficiency gains if these
are chosen reasonably. Optimization according to a particular MSE-criterion is unlikely to be
feasible, because these must depend on assumptions of the catch rates ξh and the choices of λh
that are difficult to control tightly in reality. In the end, the answers to these questions will have
to depend on the actual data under consideration and the experiences obtained over time.

5. SUMMARY

We have studied an outlier-robust threshold-sample design, which utilizes a threshold sample that
is selectedwith probability one togetherwith stratified simple random sampling from the rest of the
population. Condition (8) can be expected to provide a useful condition for the design efficiency
of the threshold sample. To use domain-specific threshold values that aim at a sufficiently low
prevalence of outliers has been shown to be a practical design approach.

In addition, we have considered a smooth domain estimation approach for reducing the impact
of representative outliers on disaggregated estimates. The domain estimators (13) are a prediction
extension of the estimator proposed by Rivest and Hidiroglou (2004). The MSE is derived with
respect to the sampling design. In practice, a plug-in approach would be used for the MSE
estimation.Wehave not investigated its performance in this paper. Evaluations based on theNRDS
data suggest that considerable gains of efficiency are achievable. Again, allowing for domain-
specific threshold values, which are regulated through a target level of the outlier prevalence,
provides a sensible approach for improving the efficiency of estimation.
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6. APPENDIX

Let (N+−A+−1)σ2B+ = ∑
i∈UB∩U+ (yi−ȲB+)2, and (N−−A−−1)σ2B− = ∑

i∈UB∩U−
(yi−ȲB−)2. Let ȲB+ be the mean of interest in UB∩U+, and ȲB− that in UB∩U−.
We have

�B = (N+−A+−1)σ2B+ + (N−−A−−1)σ2B− + (N+−A+)(N−−A−)
N−A (ȲB+−ȲB−)2

Let ȲA+ be the mean of sA∩U+, and let (A+−1)σ2A+ = ∑
i∈sA∩U+ (yi−ȲA+)2. Notice that

(N+−1)σ2+ =
∑

i∈sA∩U+

(yi−ȲA+ + ȲA+−Ȳ+)2 +
∑

i∈UB∩U+

(yi−ȲB+ + ȲB+−Ȳ+)2

= (A+−1)σ2A+ + A+(ȲA+−Ȳ+)2 + (N+−A+−1)σ2B+ + (N+−A+)(ȲB+−Ȳ+)2

where EsA{(ȲA+−Ȳ+)2|ψ} =
(
1−A+

N+

)
σ2+
A+ and EsA{(ȲB+−Ȳ+)2|ψ} =

(
1−N+−A+

N+

)
σ2+

N+−A+ .

Thus, EsA (σ
2
B+|ψ) = σ2+, taking expectation on both sides above and noting that EsA (σ2A+|ψ) =

EsA (σ
2
B+|ψ). Similarly, we obtain EsA (σ

2
B−|ψ) = σ2−. Finally,

EsA{(ȲB+−ȲB−)2|ψ} = (Ȳ+−Ȳ−)2 + A+σ2+
N+(N+−A+)

+ A−σ2−
N−(N−−A−)

The expression (5) follows then from that ofEsA (σ
2
B+|ψ), EsA (σ2B+|ψ) and EsA{(ȲB+−ȲB−)2|ψ}.
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