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Abstract  

 

Presently a significant initiative is taken at the National Statistical Offices to exploit the potentials of 

administrative data in statistical production. For instance, several investigations have previously been carried out 

at ONS, such as forecasting VAT turnover at the unit-level, adjusting VAT register totals towards the existing 

MBS-based turnover estimates etc. A critical question is how to estimate the total VAT turnover when the 

timeliness of VAT reporting is related to VAT turnover i.e. informative reporting? In this paper we develop new 

methodologies for handling informative reporting, drawing on the relevant methods for informative sampling and 

informative nonresponse. We assume a model for the outcome variable in the population of in-scope units and 

model the reporting probability. The two models define the model holding for the outcomes observed for the 

reporting units. We study maximum likelihood and estimation equation methods of fitting the model, and illustrate 

our approach using simulations.   

 

1. Introduction: 

 

There is currently a considerable drive at the National Statistical Offices to exploit the potentials of administrative 

data in statistical production. For instance, several investigations have previously been carried out at ONS, such 

as forecasting VAT turnover at the unit-level, adjusting VAT register totals towards the existing MBS-based 

turnover estimates etc.  

 

Many administrative data sources, unlike sample surveys and censuses, do not always have a closing date, after 

which the data become static and can only be altered in editing. Reporting and registration delays and corrections 

can occur a long time after the statistical reference date, whether by allowance or negligence. See e.g. Hedlin et 

al. (2006) for delayed introduction of birth units in the UK BR, Linkletter and Sitter (2007) for delays in Natural 

Gas Production reports in Texas, and Zhang and Fosen (2012) for delays in the Norwegian Employer/Employee 

Register. Depending on the situations, input data delays and changes may cause coverage errors or measurement 

errors, or both, in the integrated data. 

Let t be the reference time point of interest and t d the measurement time point, for d 0 . Let ( )U t and ( )y t

be the target population and value at t , respectively. For a unit i , let ( ; ) 1iI t t d  if the unit is to be included in 

the target population and 0  otherwise, i.e. based on the information available at t d , and let ( ; )iy t t d be 

the observed value for t  at ... The data are said to be progressive if, for 0d d  , we can have 

( ; ) ( ; )i iI t t d I t t d     or ( ; ) ( ; )i iy t t d y t t d     

 

which lead to coverage errors and measurement errors, respectively, or both. Progressiveness is a distinct feature 

of administrative data sources compared to sample surveys, unless one is determined to overlook all delays and 

changes after a certain period. Zhang and Pritchard (2013) extended the prediction framework of Valliant et al. 

(2000) for progressive data and applied it to VAT register data in UK. Zhang and Pritchard (2013) notice potential 

connections of modelling progressive data to the literature on estimation in the presence of nonresponse and 

informative sampling.  

 

2.  Fitting Reporting Model using MLE Approach:  

Let iy denote the value of an outcome variable Y  (say turnover at time t ), associated with unit i  belonging to an 

existent population  1,...,E N , a part of target population. Let ix denote the p  auxiliary variables (covariates) 

including historic y -value associated with unit i . Let  1,...,R r define the reported population with reported 

outcomes and covariates, and  1,...,cR r n  define the unreported population for which at least the outcomes 

are not reported (missing). 

Following the idea of complex survey modelling under informative sampling given by Pfeffermann, et al. (1998a), 

we developed the model for reporting population (R) when we have the pdf of existent population (E) and 

conditional reporting probability model as follows. Let 1iI  if i R and 0iI  , otherwise.    

Suppose, we denote by 
ix the covariates and then the marginal pdf of the outcome 

iy  given that unit i is in the 

reporting population is  
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Then the reporting population likelihood is  
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The reported model can be fitted under informative reporting if we know the reporting probability model 

 Pr 1| , ;i i iI y x   and the density of existent population  | ;E i if y x  . In literature, different response 

probability models like; linear, exponential, logit and probit models were used. We can use one of these models 

in (1) along with pdf of existent population to obtain the pdf of reporting model.  

 

We considered the following example using exponential reporting model. Let an existent population model have 

the following normal pdf   

      2 2| ; 1 2 exp 2R i i if y x y     x β       (3) 

and  

  0 1Pr 1| , , exp( )i i i iI y x i E y       x γ .     

 (4) 

Then  

   0 1 iPr 1| , exp( ) | xi i i E i iI x i E y f y dy       x γ  

or  
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Now using (3), (4) and (5) in (1), we have  
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x β x β  .    (6) 

   2 2

1| ; , ,R i if y x N     x β . 

The simplified form of log likelihood function for reported population is 
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As in (1), on RHS there is product of two functions. It is possible to have a problem of non-identifiability. The 

model given in (6) is non-identifiable, because from (7) we cannot obtain unique solution for the unknown 

parameters. Also the conditions for identifiability given in Pfeffermann and Landsman (2011) cannot be applied. 

Identifiable model can be obtained using logistic model instead of exponential by imposing the condition that at 

least one covariate should differ among covariates used for reporting model and density of the existent population 

(see Pfeffermann and Landsman (2011)).  

 

3. Fitting Reporting Model using Pseudo MLE Approach:  

We have seen that using above approach, we are facing difficulty of model identification and it will 

become more difficult when only historic response value will be used as a covariate (auxiliary information). For 

a simple alternative we now use the existence and reporting history of each unit to estimate its individual reporting 

probability. Then Pseudo PMLE method is used to estimate the parameters.  

To illustrate this approach, suppose the finite existent population E is of size N, and for each unit i   

0 1i i iy x     , and  20,i iN  , with 
2

i : 
2 , 

2

ix  and 
2 2
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Let the case of 
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Then census parameters 0 , 1 and
2 are defined by the following population estimating equations;  
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Here we are considering two cases when 
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2 2 2
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Log Likelihood function is 
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Then census parameters 0 , 1 and
2 are defined by the following census estimating equations 
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Let, ˆ /N N i idiag w x  
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where  FPE  y Xβ and  1N idiag xW . 

 

To estimate the finite population parameters using PMLE method, generally Pfeffermann (1993) defined that he 

pseudo MLE (PMLE) of θ is the solution of sample estimating equations  ˆ 0U θ , where  Û θ is design 

consistent of census estimating equations  U θ . The common estimator in the literature is H-T estimator so that 

the PMLE of θ is the solution of
 ;

0
i i

S i

y


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In our case, as we are using estimated reporting probabilities, we can write the reporting estimating equations as   
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For 
2 2

i ix  , The reporting estimating equations can be written as: 
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For 
2 2 2

i ix  , we need to have  1/N idiag xW  ,  21N idiag xW ,  ˆ /r i idiag w xW  and 

 2ˆ ˆ
r i idiag w xW . 

 

4. Simulation Study  

To illustrate the estimation of parameters using pseudo MLE, let, 
0 1i i iy x     ,   3,2ix rbeta  and 
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The following table shows the results of average estimates of the parameters and their empirical standard errors 

for 1000 simulations of randomly selected reporting population using the reporting indicator ir  from an existent 

population of size N = 3000.  The average reporting population is 2400.533. 
 

Table: Mean Estimates and Empirical SE  

P
a

ra
m

e
te

r
/E

st
im
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t

e
 

2 2i ix   
2 22i ix   

W
e
ig

h
ts

  

Mean Estimates Empirical SE Mean Estimates Empirical SE 

0̂  1̂  2̂  0̂  1̂  2̂  0̂  1̂  2̂  0̂  1̂  2̂  

POP 0.5136  4.9834  1.9693  0.0469  0.0852    0.0512 0.4995  5.0018  1.9973  0.0254  0.0565    0.0526 

PMLE 

0.5129  4.9839  1.9717  0.0556  0.1013    0.0619 0.4993  5.0024  1.9956  0.0310  0.0682    0.0628 ˆ
iw  

0.5129  4.9839  1.9717  0.0556  0.1013    0.0619 0.4993  5.0024  1.9956  0.0310  0.0682    0.0628 
2

ˆ
iw  

0.5130  4.9838  1.9711  0.0553  0.1007    0.0619 0.4994  5.0024  1.9956  0.0306  0.0674    0.0628 
3

ˆ
iw  

The simulation results seem encouraging. The theoretical properties of the PMLE are currently being 

investigated, including the definition of an asymptotic setting that is suitable for progressive data. 
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