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Abstract

We evaluate the merits of estimators for right-skewed data which are motivated by a distributional
assumption for the tail of the population. Our results indicate that making use of parametric models to
derive the form of estimators can be a fruitful approach for a wide range of right-skewed populations
when auxiliary data is not available, especially for small samples.
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1 Introduction

Although skew distributions are common in business surveys estimators that take this skewness into account
in an explicit way, i.e. by modeling the population, are rarely used. The reason is that such estimators risk
introducing too much bias. Instead, methods that aim at lowering the mean squared error by damping the
effect of large sample “outliers” are common. These methods will by construction result in estimates with
a negative bias. The idea explored in this paper is whether modeling only part of the population can yield
the same, or a larger, decrease in mean squared error as the dampening type of methods but without the
systematic bias component. We consider in particular two estimators, proposed by Fuller (1993) and Ståhl
(2015) (see also Balog and Thorburn, 2007) and compare them empirically to the expansion estimator,
diffrent types of winsorization approaches as well as to a model based estimator based on a lognormal
distributional assumption for the population. We focus on the most basic scenario where no auxiliary data is
available and sampling is performed using simple random sampling. In the next section a general framework
is presented, and Section 3 describes the different estimators in terms of this framework. Simulation results
are presented in Section 4.

2 Framework

Assume that a random sample, 𝑦1, ..., 𝑦𝑛, is drawn from a finite population including 𝑁 values, and that we
want to estimate the population total 𝑇 = ∑𝑁

𝑖=1 𝑦𝑖 using the sample values. Consider the following class
of estimators:

𝑇 =
𝑛

∑
𝑖=1

𝑦𝑖 + (𝑁 − 𝑛
𝑛 ) ⎡⎢

⎣
∑

𝑖≤(𝑛−𝑘)
𝑦[𝑖] + ∑

𝑖>(𝑛−𝑘)
̃𝑦𝑖⎤⎥
⎦

(2.1)
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where 𝑦[1] ≤ ... ≤ 𝑦[𝑛] denotes the sample order statistics, ̃𝑦𝑖 is a value replacing the 𝑖:th sample order
statistic in the estimator (referred to later as the 𝑖:th replacement value), and 𝑘 is a fixed non-negative value
set a priori by the sampler. We confine ourselves to estimators where 𝑘 is a pre-defined integer.

3 Estimators

We will compare 6 different estimators in our simulation study, which will be defined in terms of their
respective replacement values. As a reference estimator we use the expansion estimator, which can be
obtained from (2.1) by setting 𝑘 = 0. As an example of an estimator of the “dampening type”, we include
the k times winsorized estimator defined by:

̃𝑦𝑊
𝑖 = 𝑦[𝑛−𝑘] , ∀𝑖 (3.1)

This winsorized estimator amounts to simply replacing the 𝑘 largest sample values by the value just below
them.

Further, as a first example of an estimator derived using some form of tail modeling, we consider a slightly
modified version of the estimator proposed by Balog and Thorburn (2007) and Ståhl (2015). It utilizes the
approximate relationship between quantiles of a distribution and the expected values of the order statistics
under that same distribution, and the distribution used for this particular estimator is the Pareto. The estima-
tor will be referred to as the Pareto Quantile (PQ) estimator and corresponds to the following replacement
values:

̃𝑦𝑃𝑄
𝑖 = ̂𝑦𝑚𝑖𝑛 ⋅ ( 𝑛 + 1

𝑛 + 1 − 𝑖)
1
𝛼̂
, for 𝑖 = (𝑛 − 𝑘 + 1), ..., 𝑛 (3.2)

where ̂𝑦𝑚𝑖𝑛 and ̂𝛼 are ML estimates of the Pareto parameters based on the likelihood function which uses
only the 𝑘 largest sample values.

Next, we consider an estimator proposed by Fuller (1993), extended to include also values of 𝑘 larger than
2. It is derived using a Weibull assumption for the population. We will refer to this estimator as the Order
Statistics (OS) estimator since it is based on the idea of trying to predict the values of the order statistics
given the Weibull assumption. The replacement values of the OS estimator are given by:

̃𝑦𝑂𝑆
𝑖 = (𝑦 ̂𝛽

[𝑛−𝑘] + 𝑐𝑘,𝑖 ⋅ ̂𝜂 ̂𝛽)
1

̂𝛽 +
(1 − ̂𝛽)

2 ̂𝛽2
⋅ 𝑑𝑘,𝑖 ⋅ ̂𝜂2 ̂𝛽 ⋅ (𝑦 ̂𝛽

[𝑛−𝑘] + 𝑐𝑘,𝑖 ⋅ ̂𝜂 ̂𝛽)
( 1

̂𝛽
−2)

, for 𝑖 = (𝑛 − 𝑘 + 1), ..., 𝑛 (3.3)

where ̂𝛽 and ̂𝜂 are the usual ML estimates of the Weibull parameters, and where 𝑐𝑘,𝑖 and 𝑑𝑘,𝑖 denote the
constants 𝑐𝑘,𝑖 = ∑𝑘+𝑖−𝑛

𝑗=1
1

𝑛+𝑗−𝑖 and 𝑑𝑘,𝑖 = ∑𝑘+𝑖−𝑛
𝑗=1

1
(𝑛+𝑗−𝑖)2 , respectively.

We will also include a related estimator suggested by Fuller (1991), which makes use of the Weibull distri-
bution in an implicit way. It will be referred to as the Preliminary Test (PT) estimator and can be defined in
terms of the following replacement values:

̃𝑦𝑃𝑇
𝑖 = { 𝑦[𝑖] , if 𝑇𝑟𝑘 ≤ 𝐹𝑟𝑘

[1 + 𝐹𝑟𝑘⋅(𝑘+1)
(𝑟−𝑘) ] ⋅ 𝑦[𝑛−𝑘] − 𝐹𝑟𝑘⋅𝑟⋅𝑦[𝑛−𝑟]

(𝑟−𝑘) + ∑𝑛−𝑘−1
𝑖=𝑛−𝑟+1

𝐹𝑟𝑘⋅𝑦[𝑖]
(𝑟−𝑘) , if 𝑇𝑟𝑘 > 𝐹𝑟𝑘
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where

𝑇𝑟𝑘 = (𝑟 − 𝑘
𝑘 )

∑𝑖>(𝑛−𝑘) [(𝑛 − 𝑖 + 1) (𝑦[𝑖] − 𝑦[𝑖−1])]
∑(𝑛−𝑘)

𝑖=(𝑛−𝑟+1) [(𝑛 − 𝑖 + 1) (𝑦[𝑖] − 𝑦[𝑖−1])]

and 𝑟 is a tuning parameter. (We will use 𝑟 = 18 in the simulations, following a recommendation made
by Rivest, 1993.) 𝐹𝑟𝑘 denotes the 99.5:th quantile of the F distribution with 2𝑘 and 2(𝑟 − 𝑘) degrees
of freedom. The PT estimator is also a type of winsorized estimator, but in this case winsorization is only
performed when the sample shows extensive skewness (as measured by the test statistic 𝑇𝑟𝑘, which is shown
by Fuller to follow an 𝐹 distribution under the null hypothesis that 𝛽 = 0). Note that for the PT estimator
some samples will thus not be affected at all by the modification procedure.

Finally, as an example of a fully model based estimator we will consider the approximately unbiased es-
timator derived by Thorburn (1991), derived under a lognormal assumption for the population. (See also
Karlberg, 2000, for an extension.) It will be referred to as the LogN estimator and can be defined in terms
of the following replacement values:

̃𝑦𝐿𝑜𝑔𝑁
𝑖 = 𝑒𝑥𝑝 ( ̄𝑧 + 𝑛 − 1

2𝑛 ⋅ 𝑠2
𝑧 − 1

4𝑛 ⋅ 𝑠4
𝑧) , ∀𝑖 (3.4)

where ̄𝑧 and 𝑠2
𝑧 are the samplemean and variance based on the logarithmed values; 𝑧𝑖 = 𝑙𝑜𝑔 (𝑦𝑖), 𝑖 = 1, ..., 𝑛.

Table 1: Percent relative root mean squared error. Values greater than or equal to 1000 are repre-
sented by an asterix. Estimated simulation margin of error within parenthesis.

Weibull Weibull Lognorm Lognorm Lognorm Gamma Gamma Gamma

𝑘 𝛽 = 𝛽 = 𝑣 = 𝑣 = 𝑣 = 𝑎 = 𝑎 = 𝑎 =
0.25 0.50 1.5 2.0 2.5 0.01 0.05 0.25

Exp 0 117 (4) 32 (0) 42 (1) 103 (8) 278 (44) 139 (2) 63 (0) 28 (0)

LogN 𝑛 * 814 (99) 31 (0) 51 (0) 78 (2) 99 (1) 100 (2) *

W 1 66 (1) 29 (0) 31 (0) 50 (1) 74 (3) 99 (1) 58 (0) 28 (0)
2 66 (1) 30 (0) 32 (0) 50 (1) 72 (3) 94 (1) 61 (0) 29 (0)

PT

2 63 (1) 30 (0) 31 (0) 46 (1) 67 (3) 98 (1) 61 (0) 28 (0)
3 62 (1) 30 (0) 30 (0) 45 (1) 66 (3) 96 (1) 62 (0) 28 (0)
4 62 (1) 30 (0) 30 (0) 44 (1) 67 (3) 97 (1) 64 (0) 28 (0)
5 64 (1) 30 (0) 29 (0) 44 (1) 68 (3) 98 (1) 67 (0) 28 (0)

OS

1 97 (1) 32 (0) 32 (0) 52 (1) 80 (3) * * 37 (0)
2 94 (1) 32 (0) 30 (0) 47 (1) 69 (3) * * 46 (0)
3 93 (1) 32 (0) 30 (0) 46 (1) 67 (3) * * 55 (0)
4 93 (1) 32 (0) 30 (0) 46 (1) 68 (3) * * 63 (0)
5 93 (1) 33 (0) 30 (0) 47 (1) 68 (3) * * 69 (0)

PQ

2 67 (1) 29 (0) 31 (0) 51 (1) 76 (3) 101 (1) 58 (0) 28 (0)
3 62 (1) 29 (0) 30 (0) 47 (1) 69 (3) 92 (1) 57 (0) 28 (0)
4 62 (1) 29 (0) 30 (0) 47 (1) 69 (3) 89 (1) 57 (0) 28 (0)
5 62 (1) 29 (0) 30 (0) 47 (1) 69 (3) 510 (248) 57 (0) 28 (0)
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4 Simulation study

We performed simulations to find out whether the partly model based estimators have the ability to produce
reliable results for different types of populations. To this aim eight types of artificial populations where used,
generated from Weibull (𝜂 = 1), lognormal (𝑚 = 0) and gamma (𝑏 = 1) distributions (with parameter
specifications as in Forbes et al., 2011). Population size was set to 𝑁 = 5000 and sample size to 𝑛 = 50.
For each of the data generating models, Monte Carlo estimates of the percent relative root mean squared
error (Table 1) and the percent relative bias (Table 2) where computed. The number of populations and
samples generated in the simulations varied between models, and the estimated amount of uncertainty due
to simulation, as measured by the simulation margin of error (1.96 ⋅ √𝑣, where 𝑣 is an estimate of the
simulation variance), is reported within parenthesis in the tables.

The tables include results for selected values of 𝑘. In general, none of the estimators where very sensitive
to the choice of 𝑘. The PT estimator worked best for 𝑘 between 2 and 5 and the non-parametric winsorized
estimator for 𝑘 equal to 1 or 2, which is why the reported output is restricted to those values. For the OS
estimator results are reported for 𝑘 between 1 and 5, and for the PQ estimator for 𝑘 between 2 and 5.

For the Weibull models, the OS estimators are naturally working quite well, but in some cases their mean
squared error performance is still slightly inferior to that of the PT or PQ estimators. Turning to the Lognor-

Table 2: Percent relative bias. Values greater than or equal to 1000 are represented by an asterix.
Estimated simulation margin of error within parenthesis.

Weibull Weibull Lognorm Lognorm Lognorm Gamma Gamma Gamma

𝑘 𝛽 = 𝛽 = 𝑣 = 𝑣 = 𝑣 = 𝑎 = 𝑎 = 𝑎 =
0.25 0.50 1.5 2.0 2.5 0.01 0.05 0.25

Exp 0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

LogN 𝑛 * 323 (4) -1 (0) -2 (1) -6 (2) -98 (1) -99 (0) *

W 1 -38 (1) -9 (0) -13 (0) -28 (1) -47 (2) -58 (1) -23 (0) -6 (0)
2 -55 (1) -16 (0) -21 (0) -39 (1) -60 (2) -82 (1) -40 (0) -12 (0)

PT

2 -36 (1) -2 (0) -7 (0) -22 (1) -45 (2) -74 (1) -18 (0) 0 (0)
3 -44 (1) -2 (0) -8 (0) -25 (1) -51 (2) -87 (1) -27 (0) -1 (0)
4 -49 (1) -3 (0) -8 (0) -27 (1) -54 (2) -94 (1) -35 (0) -1 (0)
5 -53 (1) -3 (0) -9 (0) -29 (1) -56 (2) -96 (1) -43 (0) -1 (0)

OS

1 3 (1) 0 (0) -8 (0) -19 (1) -36 (2) * * 14 (0)
2 4 (1) 0 (0) -12 (0) -26 (1) -45 (2) * * 25 (0)
3 6 (1) 1 (0) -15 (0) -30 (1) -49 (2) * * 33 (0)
4 6 (1) 1 (0) -17 (0) -32 (1) -52 (2) * * 40 (0)
5 7 (1) 1 (0) -18 (0) -34 (1) -54 (2) * * 45 (0)

PQ

2 -32 (1) -7 (0) -10 (0) -23 (1) -41 (2) -51 (1) -17 (0) -4 (0)
3 -41 (1) -10 (0) -14 (0) -29 (1) -49 (2) -69 (1) -27 (0) -7 (0)
4 -45 (1) -12 (0) -16 (0) -32 (1) -52 (2) -74 (1) -32 (0) -9 (0)
5 -47 (1) -13 (0) -17 (0) -33 (1) -53 (2) -58 (1) -35 (0) -10 (0)
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mal models, the performance of the OS and PQ estimators are approximately equal. The LogN estimator
outperforms the expansion estimator here, but it is interesting to note that it is not necessarily better than the
partly model-based estimators. Looking at the results for the gamma models, we note that the most skew
gamma model stands out in that it is the only case where the PQ estimator is sensitive to the choice of 𝑘.
For the most skew model (𝑎 = 0.01), the fully model based LogN estimator worked slightly better than the
expansion estimator, but in most other cases it did much worse. (In 3% of the samples the LogN estimator
could also not be computed for this model.) For the two most skew models, the bias of the PQ estimator is
smaller than that of PT, but for 𝑎 = 0.25 the pattern is the opposite. The performance of the OS estimator
is quite similar to that of the PQ estimator when 𝑎 is equal to 0.25, but goes really bad when 𝑎 is equal to
0.05 or 0.01.
In summary, the most robust result was obtained for the PT estimator, followed by the PQ estimator. The
PT estimator probably has an advantage in its ability to adapt to the shape of the sample, and it would thus
be interesting to compare it to a more flexible version of the PQ estimator.
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