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The sampling design for a survey is a key step in ensuring the quality of statistics. Typically in 

price index surveys, businesses are the sampling units while goods or services are the 

statistical units to which prices are associated, giving rise to an indirect sampling situation. 

This paper explores a phase approach to indirect sampling design for price index surveys. 

The Norwegian Consumer Price Index (CPI) survey data provides a practical example. 

 

Introduction 
An optimal sampling design aims commonly at one of two objectives. Firstly, a design can be considered 

optimal if it minimises the variance of a chosen target estimator given the fixed sample size. Secondly, a 

design can be optimal if it minimises the sample size, or a chosen sample-size dependent cost function, 

subjected to the constraints on the estimation uncertainty.  More generally, good sampling designs aim 

to strike a sensible balance between the production costs for the survey organization, the response 

burden on the business community, and the accuracy of the statistical outputs. 

Typically in price index surveys, businesses are the sampling units while goods or services are the 

statistical units to which prices are attached. Moreover, a price index is a different parameter than the 

population totals or means that are often the default target parameters in a sampling design. The 

indirect nature of sampling and the lack of a finite-population sampling variance of the price index are 

the two major theoretical challenges in planning price index surveys.  

The Consumer Price Index (CPI) is one of the most important economic indicators. The Norwegian CPI is 

based on many different data sources (Johansen and Nygaard, 2012). For the sample survey data, the 

prices of around 500 representative goods (excluding food) are currently collected monthly from around 

2000 businesses. This provides the basis of data in this study. 

In this paper we explore a phase approach to both types of optimal indirect sampling designs for price 

index surveys using survey CPI data. The variance of the computed price index is evaluated using a 

model-based framework. The sampling design controls the expectation of the model-based variance 

over hypothetical repeated sampling from the finite business population, which is often referred to as 

the anticipated variance.  

Due to time and space limit, the presentation will be focused on the optimal design that minimises the 

anticipated variance of the price index for the survey sub-universe of the Norwegian CPI, given fixed 



sample size of business units.  The phase approach that incorporates the other type of optimal design 

will be outlined, and some challenges to its implementation will be noted. 

Price index and model-based variance 
We calculate the model-based variance of the survey CPI index as follows. All the goods are divided into 

the so-called elementary groups, denoted by g = 1, …, G. The survey CPI (𝑃̂ ) is a weighted sum of the 

Jevons index (𝑃̂𝑔), one for each elementary group. These are given as 

𝑃̂ = ∑ 𝑤𝑔𝑃̂𝑔
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Where 𝑤𝑔 is the weight for elementary group g which stands for the proportion of total expenditure for 

that group; 𝑥𝑔𝑗 is the base period price of item j in g; 𝑦𝑔𝑗  is the price of item j in the statistical period of 

interest; 𝑛𝑔 is the number of price observations for items in group g.  

 Zhang (2012) provides the model-based variance for the three commonly used elementary index: Carli, 

Dutot and Jevons. For the Jevons index, the model-based variances are given as 

𝑉𝑎𝑟̂(𝑃̂) = ∑ 𝑤𝑔
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i.e. conditional on ng, where  𝜎̂𝑔
2 is the estimated variance of items in group g given by 
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𝑧𝑔𝑗 = log (𝑦𝑔𝑗 𝑥𝑔𝑗) − log 𝑃̂𝑔⁄  

and 𝑎𝑔 is the adjustment factor associated with a Jevons index: 

𝑎𝑔 = 1 𝑃̂𝑔
2⁄  

Anticipated variance 
The indirect sampling setting corresponds in our case to a two-way classification: the elementary group g 

and the strata h of the business population, where the same group of goods may be found in businesses 

from different strata, while a business unit can provide prices pertaining to several elementary groups. 

Basically we would like to allocate the sample among the strata in a way that will yield the highest 

number of price observations in groups which have the highest variance. In practice we do not know in 

advance how many price observations we will collect in each group, so 𝑛𝑔 is a random variable. For 



planning of the sample we create a matrix (𝑏ℎ𝑔) based on historic data, where each element gives us the 

average number of price observations in each stratum-group: 

𝑏ℎ𝑔 =
𝐸(𝑛ℎ𝑔)

𝑚ℎ
 

and 𝑛ℎ𝑔 is the number of price observations from the sample in stratum h of group g and 𝑚ℎ is the 

number of sampled businesses in stratum h.  

We assume that, under stratified simple random sampling with stratum sample size 𝑚ℎ, the expected 

number of price observations in stratum-group (hg) is given by  𝐸(𝑛𝑔ℎ) = 𝑚ℎ𝑏ℎ𝑔. Substituting the 

resulting 𝐸(𝑛𝑔) into the model-based variance above gives us then an approximate anticipated variance, 

based on which we are able to use the sampling design to control the estimation uncertainty. One can 

employ a more refined approximation to the anticipated variance, which takes into account the variance 

of  𝑛𝑔ℎ and the higher-order terms of the Taylor expansion of the model-based variance in 𝑛𝑔. We do not 

go into the details here. 

Algorithms of sample size allocation for minimising the anticipated variance 
We have tested a range of algorithms for obtaining sample allocation that minimises the anticipated 

variance. Local algorithms (MMA, COBYLA and AUGLAG with MMA) were tested using the package nloptr 

in R with internal and box constraints. Additionally we tested some global algorithms (DIRECT, MLSL and 

STOGO). The results however varied greatly both among the algorithms and even more so when various 

starting points were tested. This seems to suggest the difficulty in finding a global minimum directly. We 

are currently still investigating the possibility of using readily available software packages in the hope of 

finding a viable solution directly. 

Sample allocation using a fill-up algorithm 
Meanwhile, we explored a greedy algorithm which we refer to as fill-up. This operates by adding one 

business unit at a time to the sample, for which we choose the stratum that results in the most decrease 

in the target variance. Repeated evaluation of the target variance for each additional sample unit allows 

us to keep track of the final allocation achieved. The algorithm provides us full control over the total 

sample size. It is also straightforward to accommodate restrictions of maximum and minimum stratum 

sample sizes, the latter of which can simply be set as the starting allocation. 

We have tested this approach with CPI data (Table 1). In all cases, the total sample size was set to 2127 

which is an average sample size for the year 2013. The stratification variable was the four-digit industry 

(NACE) code containing 38 strata. The grouping variable was a goods (COICOP) code and contained 516 

groups.  Five different constraints on stratum sample sizes were tested: 

1) A minimum sample size of one business unit per strata 

2) A minimum 50% of current stratum sample size as an average number for all months in 2013 

3) A minimum 50% and a maximum 150% of max(10, current stratum sample size) 

4) A minimum 50% of proportional-to-size (pps, turnover in 2013) stratum sample size  

5) A minimum 50% and a maximum 150% of max(10, pps stratum sample size) 



Strata 
industry 
code 

Restriction 
1 

Restriction 
2 

Restriction 
3 

Restriction 
4 

Restriction 
5 

Currrent 
allocation 

Proportional 
allocation 

4520 126 96 88 96 166 59 135 
4532 1 39 47 20 20 78 39 
4540 12 14 16 10 10 28 7 
4711 40 96 96 319 319 193 638 
4719 164 82 105 102 60 70 40 
4724 15 21 38 4 14 42 9 
4729 1 9 9 4 10 18 7 
4730 89 72 119 99 146 87 198 
4741 1 26 76 5 15 51 10 
4742 1 26 26 3 10 51 6 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

Variance 1.10e-06 1.24e-06 1.61e-06 1.29e-06 1.64e-06 2.21e-06 2.34e-06 

Table 1. Illustration of allocated stratum sample size by fill-up algorithm with varying restrictions (1-5) 

and fixed total sample size (2127) for 10 strata. Anticipated index variance is given in the last row. 

We have tested two variations of the fill-up algorithm. The first is to add 5 units at a time, one in each of 

the 5 best choices of strata. The second is a stochastic approach where one stratum is selected from the 

top ten strata (those which provide the most variance reduction). The selection is based on a probability 

proportional to size of the improvement in the overall variance.  Both these approaches gave similar 

results to that presented in Table 1 and are therefore omitted here.  

In addition we have experimented with the reverse of fill-up, where we start with the population 

stratum size (as if in a census of business), and each time subtract one unit from the stratum where the 

resulting variance increase is the least. Again, this gave results similar to those in Table 1. 

Sample allocation by swap algorithm 
As a greedy algorithm the fill-up does not guarantee to find the global optimum, which does exist over 

the finite space of all possible stratum sample allocation. As an alternative, as well as a means for 

exploring the plausibility of the fill-up sample allocation, we consider a tabu algorithm. 

The basic idea to swap business units between two strata: to move one unit from one stratum to the 

other and vice versa.  The current sample allocation is updated by the move that leads to a smaller target 

variance. We refer to this as the swap algorithm. The swap algorithm becomes a tabu algorithm if the 

constraint is imposed such that a previously examined sample allocation is not to be revisited. In this 

way, the algorithm generates a sequence of sample allocations that decreases monotonely in the target 

variance. The algorithm is terminated if a chosen amount of swaps do not yield an accumulated variance 

reduction larger than a threshold value. It is not guaranteed to reach the global optimum in finite time. 

Different starting points can be used to initiate the swaps. For example, we can start with the current 

sample allocation in the Norwegian CPI. Or we can start with the allocation achieved by the fill-up 

algorithm. We have tested the swap algorithm when 100 attempts to swap have been reached without 

finding an appreciable better solution. We have also tested higher number of swaps, but 100 appeared 

to be enough when the strata are chosen randomly. Moreover, the results from the swap algorithm were 



similar to the fill-up allocation described above, indicating perhaps that the results presented in Table 1 

are close to the global optimum under the respective restrictions. We are currently investigating 

potentially more efficient choices of the strata to be swapped. 

Minimising sample size by down-size algorithm 
It is possible to incorporate the other type of optimal design as an extension of results achieved so far. 

Essentially one only needs to include a set of additional constraints on the variances. These may contain 

the anticipated variances of several sub-indices. Starting from the sample allocation obtained above, we 

reduce the sample size, say, one at a time, choosing the stratum that yields the least variance increase of 

the overall price index, provided all the resulting variances satisfy the chosen constraints. Also the 

stratum sample size constraints can be adjusted adaptively to reflect the fact that the total sample size is 

being reduced all the time. We refer to this as the down-size algorithm. 

Notice that the down-size algorithm can as well be applied with the current CPI sample allocation as the 

starting point. But it seems plausible to build on the previous attempt at minimising the target variance. 

The resulting approach consists then of two phases: first fill-up and swap, then down-size and swap. In 

this way, one hopes to arrive at a sampling design that strikes an aforementioned sensible balance 

between production cost, response burden and statistical accuracy.  

Concluding remarks 
Our experience so far suggests that it may be difficult to pin down unequivocally the definition of either 

type of optimal sampling design, and to find the corresponding global optimum directly. In response to 

this we have developed a phase approach to indirect sampling design for price index surveys, which aims 

at striking a sensible balance between the conflicting central objectives of sampling design. 

The main practical objective of our ongoing investigation is to automate this phase approach, given the 

target variance and the constraints on estimation uncertainty and sample size. An important issue is to 

understand better the reason or how the sample allocation varies according to the different constraints. 

A related, albeit even more difficult, issue concerns the relationship between the global optimum and 

the potentially many local optimums that are nearly globally optimal. 

References 
1. Johansen, Ingvild og Nygaard, Ragnhild. Various data collection methods in the Nowegian CPI. Oslo : 

Statistics Norway, 2012. 

2. Zhang, Li-Chun. A model-based approach to variance estimation for fixed weights and chained price 

indices. Official Statistics Methodology and Applications in Honour of Daniel Thorburn. 2010, 149-166. 

 


