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Abstract: A statistical approach to the network structure of the economy has received little attention in the world of 

official statistics. The core of business statistics aims at revealing macro phenomena by extrapolating the 

characteristics of a “representative agent” to the entire population rather than paying attention to the interaction 

within populations of heterogeneous actors. 

In the European Statistical System ownership relations between units (the link between units rather than the units 

themselves) are recorded as relevant characteristics to be measured in Foreign Direct Investment Statistics (FDI), 

Foreign Affiliates Statistics (FATS), in Business Registers in building enterprise group structures and in Structural 

Business Statistics (SBS, annex 9) in the determination of “demographic events”. Ownership relations also play a 

role in the delineation of “enterprise” units. 

The academic world has already been looking at the economy as a complex network. Chaos, complexity and entropy 

as mathematical concepts in the realm of statistical mechanics have been applied to the network structure of 

production, with inter alia special attention to the buyer-supplier relationship between base units. 

With the increase of computational power available to the statistical institutes, it becomes possible to test different 

network approaches and to compare different attempts to describe connected businesses as “evolving networks”. 

Progress made in the field of statistical mechanics of complex networks could be helpful in getting a better 

understanding of e.g. the occurrence of power law distributions. One useful application of mapping a network 

structure seems to be that it facilitates assessment of a system’s vulnerability to shocks. 

 

Power Laws and Establishment Statistics 

In the 1830s the Belgian statistician Adolphe Quetelet developed a theory of “l’homme moyen” (the 

average man), applying the Gaussian distribution to the study of all kinds of human characteristics. In 

1890 Alfred Marshall, one of the most influential economists of his time, introduced the concept of 

“representative firm”. Nowadays the term “representative agent” refers to the typical decision-maker of a 

certain type (for example, the typical consumer, or the typical firm). If this agent is truly representative, 

then his behaviour will be reflected in the economy. A model contains representative agents while agents 

may differ individually but act in such a way that the sum of their choices is mathematically equivalent to 

the decision of a (random) subset of agents. 

The assumption that every unit under study is alike is extremely convenient for relating individual to 

aggregate behaviour. In statistical and economic models normality is often assumed. In practice 1 the 
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distribution of data is found to be different more frequently than expected. Social and natural scientists 

have drawn the attention to the prevalence of power law distributions. 

Zipf, Pareto and power law distributions are closely related: 

The Zipfian distribution is one of a family of related discrete power law probability distributions. Zipf’s 

law states that the size of the r’th largest occurrence of an event is inversely proportional to its rank (e.g. 

the frequency of any word is inversely proportional to its rank in a frequency table, “the” 7%, “of” 

3.5%...). :  

   y ~ r-b  with b approximately equal to 1. 

Pareto’s law is formulated in terms of the cumulative distribution function (e.g. how many people have an 

income higher than x): 

P[X > x] ~ x-k 

Most of the time a power law distribution refers to the probability distribution function associated with 

the cumulative distribution function given by Pareto’s law (e.g. number of people with income x):  

P[X = x] ~ x-(k+1)  = x-a 

 

The probability that random variable X exceeds some level x is proportional to 1/xk. In other words the 

probability of X being large is much higher than in a normal distribution (in a normal distribution the 

probability of large events decays exponentially with their size, making large events increasingly rare at a 

rapid rate).  When k takes a low value, the tail of the distribution is fat.  

Power law-distributed data only have a well-defined mean when a > 2 and a finite variance only exists 

when a > 3. This makes it incorrect to apply traditional statistics that are based on variance and standard 

deviation (such as regression analysis), central limit theorem may not apply to power law-distributed 

variables, there is no “regression to the mean” if the mean is ill-defined and the variance unbounded. 

Examples: 

- Word frequency2 

- Web hits3 (cumulative distribution of the nr of  hits received by web sites during a single day) 

- Citations of scientific papers 

- Email messages that people send and receive4 

- Populations of cities 

- Income and wealth distribution 

…and many more. A more in-depth review can be found in Gabaix (2009), Power Laws in Economics 

and Finance.5 

Scientific interest in power-law distributions is related to the possible mechanisms that underlie the 

phenomenon; they are often thought to be the result of specific stochastic processes. Clearly there is also 
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an interest from the study of probability distributions, the fat upper tail having to do with the frequency of 

extremely rare events like stock market crashes and large natural disasters. 

The linear models used to forecast economic conditions have great difficulties in coping with sudden 

changes. In January 2008, real GDP growth in 2009 was expected to be around 2% in the Eurozone and 

2.5% in the U.S.. By January 2009 these forecasts were -1.5% and -2 %. Instability in the global credit 

markets prompted the worst economic crisis for 70 years. The credit network had become so highly 

interlinked that each participant faced high risks from the possible collapse of their partners. Traditional 

central bank controls had focused on the health of individual institutions rather than on networks of many 

institutions in interaction. In the opinion of network scientists6 “The banking failure is, in many respects, 

a failure of economic science to have any well-developed understanding of the financial system as a 

complex dynamical network. (…) regulators will need to take a more holistic view, monitoring the nature 

of the links between institutions and the overall stability of the credit network.” 

Describing large scale behaviour of a system is always done by simplifying the mathematical description 

of the system, so that there are only a very limited set of possible behaviours that can happen. This idea is 

used in traditional theory by using the normal distribution for many different biological and social 

systems. It is possible because when a system has independent parts, the way they aggregate is the same, 

and the result is the normal distribution as the largest scale behaviour of the system. When there are 

dependencies, the normal distribution no longer applies, but there are behaviours that are characteristic of 

other kinds of dependencies. The idea of universality recognises that systems map onto a small set of 

large scale models, each of which applies to a large set of possible systems with widely different micro 

details.8  

With the advance of network science, interest has grown in approaches that go beyond traditional 

methods. The United States National Research Council defines network science as "the study of network 

representations of physical, biological, and social phenomena leading to predictive models of these 

phenomena." Economic-, trade- and financial networks can  also be seen as complex systems7. 

In complex systems, the units are acting neither totally independently nor totally coherently; rather, they 

are interdependent, both influencing each other and compelled by common causes. An example can be 

found in commodity markets. The traditional theory of markets assumes that people decide on 

investments independently and rationally, and therefore predicts a supply and demand equilibrium. 

Interestingly, it is not so much the assumption of rationality that does not hold up in complex systems 

analyses of markets today, but rather the independence. The breakdown of equilibrium due to 

trendfollowing has been well-established since 1990, but the theory at that point, subject to the constraints 

of the concepts and mathematics of traditional economics, was not able to represent the dynamics after 

the breakdown.8  

The study of systems of interdependent elements implies making use of existing knowledge in mechanics 

and statistics at the same time, i.e. statistical mechanics (or thermodynamics).  Advances in understanding 

the scaling properties of evolving networks have benefited from concepts like e.g. nucleation theory and 

gelation.9 
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Complex systems 

Traditionally the study of complex networks has been the territory of graph theory. Since the 1950s large-

scale networks have been described as random graphs. The most common type is the Erdὅs-Rényi 

random graph. In the model, we start with N nodes and connect every pair of nodes with probability p, 

creating a graph with approximately pN(N-1)/2 edges distributed randomly. 

Many real-world networks display similar topological properties, strikingly different from those shown by 

random graphs. This motivated the search for theoretical models aimed at understanding the mechanisms 

at the basis of network organization. 

Albert-László Barabási introduced10 in 1999 the concept of scale-free networks and proposed the 

Barabási–Albert model to explain their widespread emergence. A common property of many observed 

networks is that the node connectivities follow a scale-free power-law distribution. His model is based on 

two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new 

vertices attach preferentially to sites that are already well connected. It reproduces the observed stationary 

scale-free distributions, which indicates that the development of large networks is governed by robust 

self-organizing phenomena that go beyond the particulars of the individual systems.  

A second class of models is based on the hidden variable hypothesis: vertices are assumed to be 

characterized by an intrinsic quality or fitness that determines their connection probability. The model has 

been applied11 for instance on the world wide network formed by trade relationships, with the GDP of 

each country as fitness variable. 

Network models are defined by a number of properties that may or may not agree with empirical results 

on real networks. The most common properties that are seen as robust measures of a network topology : 

Size: usually the number of nodes (N). 

Average degree: degree k of a node is the number of edges connected to it.  
Let E be the number of edges. 
 
The average degree <k> = 2E / N  
 
The average number of edges is not always meaningful. In networks with power-law degree 
distributions, most of the nodes are of low degree, but there are also highly-linked nodes  
(nodes of high degree) called “hubs.” 

 
Average path length: average shortest distance between any two nodes in the network 

Consider a network G with a set of nodes (vertices) V. Let dist(v1,v2) denote the shortest 
distance between v1 and v2 (v1,v2 ∈  V). Assume has_path(v1,v2) = 0 if v1 = v2 or when v2 cannot be 
reached from v1 and has_path(v1,v2) = 1 in other cases. The average shortest-path length ASPLG 
is: 
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ASPLG =  
∑ 𝑑𝑖𝑠𝑡(𝑣𝑖,𝑣𝑗)
𝑁
𝑖,𝑗

∑ ℎ𝑎𝑠_𝑝𝑎𝑡ℎ(𝑣𝑖,𝑣𝑗)
𝑁
𝑖,𝑗

 

 

 

Clustering coefficient: 
Sometimes described as "all-my-friends-know-each-other". The clustering coefficient of node i 
is: 

𝐶𝑖 = 
2𝑒𝑖

𝑘𝑖(𝑘𝑖−1)
 

where ki is the number of neighbours of node I and ei the number of connections between these 
neighbours. 
The clustering coefficient of the entire network is the average of the clustering coefficients of all 
the nodes. 

 

These global properties give an overall view of the network, but might not be detailed enough to 

capture complex topological characteristics of large networks, they are weak predictors of network 

structure. (networks can have the same size and degree distribution but still have a very different graph 

structure)  

Another type of properties has gathered much attention as useful concepts to uncover design principles 

of complex networks: local network properties.   Research has shown the existence of recurring small 

graph structures in many types of real networks. These recurring subgraph patterns are called network 

motifs, graphlets or more simply subgraphs. It has also been shown that complex networks can be 

compared and classified into distinct functional families, based on their typical motifs 

Motifs: 
A network motif is a small over-represented partial subgraph in a real network. The “null-model” to 
identify motifs as over-represented can be a random graph model, e.g. Erdos-Renyi random graph. 
Research demonstrated for instance that the motifs shared by ecological food webs were distinct from 
the motifs shared by the genetic networks of Escherichia coli and Saccharomyces cerevisiae or from 
those found in the World Wide Web. Motifs may reflect functional properties within networks. 
 
Graphlets: 
Graphlets are small connected non-isomorphic sub-graphs of a graph G induced on n ≥ 3 nodes of G 
(there are e.g. 21 graphlets for n = 5). They don’t have to be over-represented:  graphlet degree vectors 
(signatures) and signature similarities are compared. This has been successfully applied to biological 
networks to identify groups (or clusters) of topologically similar nodes in a network and predict 
biological properties of yet uncharacterized nodes based on known biological properties of 
characterized nodes12. 
 

 

Economic networks 
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Robert Gibrat, a researcher in economics, published in 1931 “Inégalités Economiques”13,  a book that 

became the starting point of one of the most important strands in the literature on market structure, 

and in which he presented a formal model of the dynamics of firm size and industry structure (‘Gibrat’s 

law). He described a stochastic process in which14 : 

a. the expected increment to a firm’s size in each period is proportional to the current firm size  

b. the increments have no temporal correlation (random walk) 

c. there is no interaction between firms 

With growing availability of data and processing capacity, it has become clear that these assumptions do 

not hold empirically15 , but Gibrat’s model is still prominent in literature on the topic16, and is often used 

as a benchmark. Over the last decades, various factors that could possibly influence firm growth have 

been considered as well as different definitions of what represents growth (e.g. employment, cost of 

goods sold, assets,…). At the same time the interaction between the elements in the economic network 

became an element of interest. 

In game theory  the “random growth” element is replaced by a process in which firms that differ in 

various attributes make different choices. As the number of choices grows very fast, the focus is on the 

simplest topologies(e.g. cycles of four agents)where agents decide to add or delete links between them. 

An Example is the interplay of cooperation and competition in the formation of innovation networks17. 

 The network view pays more attention to the network as a whole and statistical properties as results  of 

interaction.  Buyer-seller networks, ownership networks, supply chain hierarchies,…  The focus being on 

their “wiring diagram” and their functional properties like stability and information processing capacity. 

In this view, interaction means that it is not possible to define a representative agent because the 

dynamics of the system is originated just from the interaction among heterogeneous agents. 

The notion of economic networks can be traced back to the 1930s18, although the nodes used in the 

Leontief analysis at that time are economic sectors rather than individual firms. Within the European 

Statistical System, this is reflected in the production of input output tables. While these tables are based 

on products or industries, a number of events have shown that the analysis of aggregated data fails to 

take into account the economic dependencies between the entities at a lower level (e.g. firms, 

enterprises,…). With regard to supply chains for instance, an earthquake and tsunami in Japan caused 

disruptions that affected economic activity in many other countries. Microeconomic shocks 

(idiosyncratic shocks to individual firms) are not evened out by the law of large numbers as was 

believed, but can propagate to the rest of the economy through production chains, leading to 

fluctuations in production. On a larger scale, the economic crisis also highlighted the importance of 

interconnections between firms. Both the spread of the risks emanating from toxic assets on the 

balance sheets of several financial institutions to the rest of the financial sector, and the transmission of 

the economic problems to the rest of the economy have been linked to such interconnections.  

Within the 7 th Framework Programme for Research and Technological Development (FP7) a project 19 

called CRISIS ran from 2011 to 2014. It was conducted by a consortium of ten universities and a number 

of central banks collaborating to develop a next generation macroeconomic-financial system model 
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using "agent-based" modelling to be able to model crises in a more realistic and bottom-up way than 

has been possible previously. The CRISIS model was intended to enable central bankers and other 

policymakers to explore policies for managing systemic risk to reduce the chances of future crises and 

minimise their impact. The consortium states on its website: 

The goal is to build new models, one for the EU financial system and one for its macroeconomy.  

When they are completed, CRISIS will turn the models into software that can be used by central 

banks and governments. For that reason, CRISIS will work in collaboration with major central 

banks, government economic and finance ministries, and with multilateral institutions. 

 
 
The latest insights on how we should produce business and economic statistics are a game changer.  
What we have done until now is based on three assumptions: 
 

a. Households, firms, and governments are perfectly rational and tend to behave in similar ways to 
each other 

b. The economy settles into a balanced “equilibrium” state 
c. The detailed institutional structures and interconnections of the system do not generally matter 

for macroeconomic policy 
 

The fact that an important and growing part of the users of official statistics claim that all three 
assumptions are wrong can have far reaching consequences for the future. If we continue without 
taking notice of the changes, our work might become obsolete.  
 
There are also opportunities that come along with the shift from aggregating data from “representative 
agents” to describing network properties that emerge from the interaction of elements in a network. A 
range of statistics and methods that have as yet no place within the European Statistical System are 
there to explore. 
 
Some of the statistics in the European Statistical System incorporate to a certain extent a network view. 
For instance ownership relations between units (the link between units, or edges) are recorded as 
relevant characteristics to be measured in Foreign Direct Investment Statistics (FDI) and Foreign 
Affiliates Statistics (FATS). The enterprise group structures maintained in the Business Register are 
essentially graphs representing a control relationship. 
 
 In these examples cited in the previous paragraph, we can see that a specific network model is used: 
the pyramid model, with the top of the pyramid directly or indirectly controlling the units at a lower 
level of the group structure. A possible extension could be found for instance in analyzing a number of 
frequently observed complex ownership patterns to better understand their role in these ownership 
networks and to predict properties of certain units from the properties of units in similar sub-graphs.  
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