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1 Introduction

The Swiss Federal Office of Statistics (SFSO) uses a coordinated sampling system developed
in Qualité (2009) that extends the method proposed in Brewer et al. (1972). Each transversal
sample selected through this system stems from a Poisson sampling design. This procedure, with
its inherent size-variability, calls for updated planification methods of target sample sizes within
domains, to replace allocation optimization techniques that were used for stratified designs.
One particular aspect, introduced with these Poisson designs, and that did not exist with the
stratified sampling designs that were commonly used before the introduction of the coordination
system, is the risk of selecting a sample that is well below the expected size in some domains.
This risk is also present when non-response is modeled as a second-phase Bernoulli sampling
within domains. Up to now, the effect of this coordinated sampling system on the number of
repeated selection of businesses has been modest. Still, it has permitted to easily select a new
sample after a major redesign in the survey of value added, which is a rotating panel type of
survey, and to have a unified frame and rapid access to selection history of businesses.

2 Coordinated Poisson Sampling

In Qualité (2009), we proposed a coordinated sampling method that allows to obtain, a minimal
or maximal correlation between selection indicators I,i of unit k in different samples s’ for all
k in a population U. It is a natural extension of Brewer et al. (1972)’s sampling design for
two surveys. The method of Brewer et al. (1972) consists in generating a permanent uniform
random number uy, in [0, 1], and defining selection zones as subsets of [0, 1] for each unit & in
such a way that,

1. the length of the selection zone for sample s' (resp. s2) is equal to the desired inclusion
probability 77,% (resp. 77,%),

2. the overlap between selection zones is minimal if negative coordination is desired and
maximal if positive coordination is desired.

For positive coordination, it amounts to define the selection zone of k in s* as [0, 77,1,) and for the
selection of k in s? as [0,72). Thus [0,1] is effectively split into three intervals as in Figure 1.
Each of these intervals corresponds to a possible value of the couple (I ,1, I ,3)

For negative coordination the selection zones in s' and s? are typically equal respectively to
[0,7}) and [}, 7} + 7}), if the sum of inclusion probabilities does not exceed 1, as in Figure 2.
In the general case of negative coordination, [0, 1] is split into three intervals, the boundaries of
which are given by 0, 7}, (7}, 4+ %) modl and 1.



Fig. 1: positive coordination when 7[']3 < Tré
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We extend this idea to the selection of any number of samples by defining recursively for any
new survey a selection zone for each unit. The principle is easily understood on an example:
say that, after s' and s have been selected with positive coordination, and that the situation
is similar to that of Figure 1. Suppose that one wants to select a third sample s3 positively
coordinated with s? but negatively coordinated with s', and that, for example, ﬂ'z > 7'(']%. Then,
the selection zone for s will contain the selection zone for s? and an other bit of [0, 1] that
respects the desired coordination rules in the best possible way. In this case, typically, we will
add [}, 7} + 7} — m7) to obtain the selection zone of s*, as in Figure 3.

Fig. 3: Coordination of a third sample
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More formally, at time ¢ and for a unit k, the interval [0, 1] is split into a collection of at most
t 4+ 1 sub-intervals. Each of these sub-intervals is associated to a possible history of selections
of unit k. The addition of a new survey s‘T! is obtained by including into the selection zone
for s'*! the intervals that correspond to the most desirable history of selections, and usually
splitting one of these sub-intervals into two parts so that the total length of the selection zone
is equal to the desired inclusion probability 7rlt€+1. A total order on the sub-intervals is necessary
to make this operation. The one we use is obtained by asking of the user to specify the type
of coordination that he would like to have with each previous survey, and to give an order of
priority for these coordinations.

The transversal sampling designs are Poisson sampling designs, and hence are random size.
If coordinations are all negative and respect the order of selection in time, the longitudinal
design for all units is systematic, which is arguably (see for example Nedyalkova et al., 2009)
the best design regarding burden repartition.



3 Developments and real life adaptation

The method presented in section 2 is flexible enough to draw all types of samples currently used
in the SFSO: one occasion surveys, panels updated every other years and rotating panels. The
latest are in fact selected as collections of subsamples. For example, if the expected rotation
rate is 20%, we select five subsamples that constitute the initial sample. The following year,
five other subsamples are selected with coordination rules that ensure that four out of the five
initial samples are simply updated for births and deaths in the population, while the fifth is
replaced by a new and negatively coordinated sample. Births and deaths in the population do
not jeopardize the system as units are treated independently, and even mergers and splits can
be dealt with by transmitting the history of one former unit to a new one when it seems to
make sense.

This sampling program has been used in the SFSO since October 2009 for business surveys,
and since November 2010 for population surveys. It has admittedly a modest impact on business
surveys burden repartition. Indeed, in business surveys, most units are either in “take-all
strata” or have very small inclusion probabilities. In both cases, sample coordination does
not bring much compared to independent selections. Still, it provides a simple method with
solid theoretical foundations to update panel samples, and to draw rotating panels in a dynamic
population, as well as the assurance that we did the best we could to avoid unnecessarily frequent
selections of the same units. For population surveys, the need for a coordination method has
been made pregnant by the introduction of an annual “structural survey” with a sampling
fraction close to 7%.

Up to now, two limitations of the method have had to be accounted for. Both are related to
the fact that transversal designs are Poisson designs. The simplicity of this sampling design is
the reason we are able to implement a flexible coordination sampling program, but it does not
completely suit every needs of the statistician who is only concerned with his sole upcoming
one-occasion survey. One aspect of Poisson sampling that may be problematic is its random
size. As we see in section 3.1, this has little to no effect on the expected accuracy of the
sampling strategy, but the risk to select a sample smaller than anticipated exists, and some
measures have to be taken to account for that risk. The other problematic aspect is that,
with Poisson sampling, the selection of a unit is independent from the selection of another
one. However, for business surveys as well as for population surveys, two kinds of units are of
interest: businesses and local units in the first case, individuals and households in the second.
The independence between selections prevents us from selecting coordinated surveys at both
levels with coordination between both kinds of surveys.

3.1 Planification with Poisson sampling

When we introduced our coordination system, with its Poisson transversal designs, the concern
most frequently expressed by our partners was with the loss of precision anticipated due to its
random size. And it is true that, for some variables strongly correlated to the inclusion prob-
abilities, a random sampling design used in conjunction with the Horvitz-Thompson estimator
(Horvitz & Thompson, 1952) has higher variance than a fixed size design also used with the
Horvitz-Thompson estimator. However, in practice, it is never the Horvitz-Thompson estimator
that is used for estimation, but rather the Hajek estimator (Hajek, 1971) or better a calibrated
estimator (see Deville & Sérndal, 1992). Then, if the inclusion probabilities are among the
calibration variables, sample size randomness is almost entirely irrelevant for the precision of
the sampling strategy, as is shown in the following widely applicable example.

Consider a population of size N, an interest variable y with corrected variance S; and the



simplest possible example of Bernoulli sampling used with Héajek’s estimator, noted }/}Hj(s), and
simple random sampling without replacement, with the same inclusion probabilities p = n/N,
used with Horvitz-Thompson’s estimator noted }A/HT(S) (see for example Sarndal et al., 1992).
Conditional on size n(s) of a sample and provided that n(s) # 0, we get that

var (?Hj\n(s)> = N? (1 - n](vs)> nts(é)’ and E (?H]]n(s)> =Y, (1)

where Y is the true population total of . In order to carry out computations, we need to extend
Y#i(s) to the null sample and choose a value Y (). Estimator Y ;(s)’s bias is equal to

B(Yij) = (1= )™ (Vi 0) - Y). @)

and is of the order of exp(—n) if N is large enough. In most applications, exp(—n) < 1/n
and we will neglect this bias. In order to simplify the variance computation, suppose that
Y#;(0) =Y. Then,

Var(lAij) = var {E [?Hj\n(s)} } +E {Var [?H]\n(s)] } , (3)
simplifies to

Var(?Hj) = E {var [?Hj\n(s)} } ,

Approximations for the summation in the last expression are available in Thionet (1963);
Marciniak & Wesolowski (1999); Grab & Savage (1954); David & Johnson (1956). They all
lead to conclude that R R

var(Yy;) = var(Yyr) + O (n72). (4)

The real problem is that, in small domains, the selected sample can have a smaller size
than what is deemed acceptable, even before the non-response phase. Variances conditional to
size will then be uncomfortably large. In order to limit that risk, we may choose to modify
the initial allocation of the sample between domains and increase the sampling size in certain
domains. When inclusion probabilities are equal within domains, we can easily compute the
probability of obtaining a sample size below a given value P(n(s) < npin), that is a function
of the sampling rate. We then invert this function and determine sampling fractions such that
P(n(s) < Mmin) = a where « is the accepted risk of obtaining a sample that is too small.
This leads us to modify our allocation algorithms, and accept a result that is less than optimal
for the estimation of a total on the whole population. Also, when there is a large number of
such small domains, it becomes very costly, in terms of precision or of expected sample size,
to use a parameter a small enough so that the probability of having one or more unwanted
domain sample sizes remains small. While this is a serious problem, it is in fact inherent to all
sampling operations with non-response when one models the non-response phase by a Bernoulli
or multinomial sampling design. Cost added by the random size Poisson selection is then
relatively small compared to that of controlling risks of an unlucky non-response phase result.
Up to now, this risk has been taken care of by bluntly and arbitrarily raising the minimum
target size in the intersection of activity domain and size class.



3.2 Effects of coordinated sampling on units burden

As positive coordinations are required as well as negative negative coordinations, monitoring
the performance of our coordination system is not an easy task. Moreover, the presence of
take-all strata in some surveys implies that the absolute number of repeated selections may not
be sufficient to evaluate the system, even if only negative coordinations were required. Indeed,
some of these multiple selections may be forced, and when it is not the case, coordination is
ineffective in a stratum that is exhaustively selected at one survey and not at the other: a sample
slightly larger than expected in such strata induces a larger number of repeated selections than
expected under independent sampling. Tables 1 and 2 illustrate these problems. In table 1,

Number of selections (actual/exp. independent/forced)

Nb. employ. Total 0 1 2 3 4

02 305344 | 305284/305268/305330 54/71/12 6/5/2 0/0/0_0/0/0
3-9 147076 | 137710/137910/146601 9335/9026/473 30/138/2 1/1/0 0/0/0
10-19 20231 26208 /26300,/28672 2005/2866/552 27/64/6 1/1/1  0/0/0
20-49 16305 9752/10121/13755 5220/4582/2195 1327/1536/354 6/67/1 0/0/0
50-99 5494 1419/1415/1458  1905/1914/2037 1900/1901/1992  270/263/7 0/0/0
100+ 4959 1011/1018/1272  1142/1126/1366  2388/2399/1941  417/415/379  1/1/1
Total 508409 | 481474/482033/497088 20561/19585/6635 5678/6043/4297 695/746/388 1/1/1

Tab. 1: Number of
pling /forced.

selections after 4 surveys: actual/expected under independent sam-

we find the number of units by number of actual selections and size class after four sampling
occasions, all negatively coordinated, as well as by the number sampling occasions were these
units received an inclusion probability equal to one. We can see in table 1 that the effect of
coordination on businesses with up to 49 employees was to increase the number of units that
are selected once and decrease the number of businesses that are selected more than once,
if we compare it with independent sampling. For businesses of 50 employees or more, the
system had no impact whatsoever on the burden spread. There were actually slightly few more
triple selections than would be expected with independent sampling, probably due to the size
variability of the Poisson sampling design. In table 2, we find the situation after seven sampling

Number of selections (actual/exp. independent)
Nb. employ. 0 1 2 3 4 5 6 7
02 305284/305268 54771 6/5 0/0 0/0 0/0 __0/0 0/0
3.9 134616/132257  7605/12610  4794/2064 60,142 1/3 0/0  0/0 0/0
10-19 21078/21743  5488/5982  1532/1194  225/274 8/37 0/1  0/0 0/0
20-49 7770/8013 4324/4227 2808/2422 1033/1148 299/401 71/94 0/0 0/0
50-99 1179/1189 245/232  1682/1700 1597/1607  687/655 103/111  1/1 0/0
100+ 859/895 409/351 834/810 952/1024 1170/1133 717/723 18/22 0/0
Total 471686/469365 18125/23472 11656/8195 3867/4195 2165/2230 891/929 19/24 0/0

Tab. 2: Number of selections after 7 surveys: actual/expected under independent sampling.

occasions, one of which is the renewed value-added rotating panel. Here we cannot evaluate
anymore the system performance by comparing coordinated and independent sampling since
some of the repeated selections are actually sought after. And indeed, for businesses of less
than 50 employees, the number of repeated selections has been larger than under independent
sampling. For large businesses, we cannot conclude anything. Only a careful examination of
our two value-added samples permitted us to confirm that the system did what we wanted: it
selected overlapping samples as well as possible in spite of the major redesign that occurred
between their selection.
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