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Abstract: Commonly, the business surveys produce estimates for a huge number of domains that define two or more 
partitions of the target population. When domain indicator variables are known at population level then a multi-way (or 
incomplete) stratification design can be used, guaranteeing a sample with planned size in each domain. The multi-way 
approach has some advantages with respect to the standard approach (using a one-way stratified design where the strata are 
obtained combining the domains of the partitions) such as: the sample allocation is more efficient (smaller sample size with 
same sampling errors); the response burden is reduced both in a given survey occasion and considering several survey 
occasions (for the combining strata with small population sizes the one-way design selects with high probability or sometime 
with certainty some business units in each survey occasion producing a great statistical burden). The paper shows an 
algorithm for defining an optimal sample allocation for the multi-way design according to the definition proposed by Bethel 
(1989). The procedure is suitable in the multivariate-multidomain case and assumes that the multi-way random sample 
selection is performed by the cube algorithm (Deville and Tillé, 2004).  
 
 
1. Introduction 
 
Commonly, the business surveys produce estimates for a huge number of domains. These domains generally define 
not nested partitions of the target population. When the domain indicator variables are available for each sampling unit at 
the sampling framework level, there are some advantages to plan a sample covering each domain. A standard approach is 
to use a stratified random sampling design in which strata are identified by the cross-classification of variables defining the 
different partitions. Multi-way (or incomplete) stratified sampling design is a second approach. This design takes under 
control the sample size in all the domains without using cross-classified strata. 
The multi-way approach has some advantages with respect to the standard approach such as: the sample 
allocation is more efficient (smaller sample size with same sampling errors); the response burden is reduced both 
in a given survey occasion and considering several survey occasions. The problem is well known in the Structural 
Business Surveys where many cross-classified strata have small population size. In such cases the sampling 
design gives high probability or sometime certainty to some business units to be selected in each survey occasion 
producing a great statistical burden. Multi-way stratified sampling design avoids this problem. There are several 
methods implementing multi-way design, but, usually, in large scale surveys they have problem of application 
(Falorsi et al., 2006). This is not the case of the cube method (Deville and Tillé, 2004) that may select a random 
sample of multi-way stratified design for a large population and a lot of domains. The aim of the paper is to 
delineate a procedure defining the set of inclusion probabilities such that the overall sample size is minimized 
guaranteeing that the sampling variances are lower than prefixed level of precision thresholds following the 
definition of optimal sample allocation given by Bethel (1989). The procedure is based on two phases: the 
optimization phase implementing an original optimal allocation algorithm, the calibration phase using a calibration 
procedure to obtain the final inclusion probabilities such that summing up on each domain an integer is 
achieved. The paper is devoted to the optimization phase. 
 
2. Sampling strategy 
 

We denote by U the reference population of N elements and by dU  (d=1, …, D) the domains where the 

parameters )(drt  Uk rkrky   have to be estimated, being rky  the value of the r-th variable of interest in the 

k-th population unit and dk  the dU  domain membership indicator variable value, being 1dk  if dUk   and 

0dk  otherwise. The aim of the sampling strategy is of basing each estimate on a planned sample size. We 

consider a general random sampling design where are defined the minimal planned subpopulations hU  (h=1, …, 

H) of size hN . That means no subpopulations completely included in hU  have a sample size fixed in the 

sampling selection. We assume two cases dU = hU  or dU = hh U
d

  where d  is a subset of  H,...,1 . We 

indicate by hk  the hU  domain membership indicator variable value, being 1hk  if hUk   and 0hk , 
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otherwise. Given the vector ),...,( 1 Hkkk δδδ  one or more elements may assume value one. The parameters of 

interest are estimated by the Horvitz-Thompson estimator )(̂drt . With this quite general sampling strategy Deville 

and Tillé (2005) proposed an approximated expression of the variance  
 

   


Uk kdrkdrp ftV 2
)()( )1/1()|ˆ( π     (1) 

 
where π ,( 1 ),...,... Nk   is the inclusion probabilities vector, f = N/(N-H), kdr )( dkrky  kdrk g )(  and 

kdrg )( = )(drk Bδ , being  
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  kUk kkkdr  δδB )1/1(   kUk rkkdkk y  δ .   (2) 

 
In case of simple random sampling design with hU =U, H=1 and k =n/N the (1) is the exact expression of the 

variance. When the )0,...,1,...,0(kδ  type vectors are used ( dU = hU ) and hhk Nn /  a stratified design is 

implemented. The (1) may defined as  
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The (3) approximates the stratum variances according to the approximation )1/(1)/1(  hh NNf .  

Finally, when the kδ vectors have more the one element equal to 1 we have a multi-way stratified design. 

 
Example: The estimates have to be obtained for three domain types lT (l=1, .., 3). Each domain type defines a 

partition of the population of lD  cardinality being 321 DDDD  . Different sampling design allows to plan 

the sample size of the interest domain: 
 the standard approach define the hU ’s combining the population of the three domain types. Then 

321 DDDH   and the kδ  are defined as (0,..,1,...,0) vectors. We denote these design as cross-

classified or one-way stratified design; 
 the hU ’s are defined combining all the couples of domain types. Then 

)()()( 323121 DDDDDDH  ; 

 some hU ’s agree with the domains of one population partitions (for instance 1T ) and the others hU ’s 

are defined combining couples of the remaining domain types ( 2T  and 3T ). Then )( 321 DDDH  ; 

 the hU ’s agree with the domains of populations. Then 321 DDDH  . 

 
The choice of the sampling design depends on theoretical and operative reasons. In particular, from the 
operative view point to implement random selection scheme to obtain the one-way stratified design is quite 
straightforward, while is more difficult to define a random selection for the multi-way stratified design. In 2004 
Deville and Tillé proposed the cube algorithm suitable to select randomly a multi-way stratified sample. 
 
3. Optimal allocation algorithm 
 
The sampling design needs to know the elements of the π  vector. We propose an algorithm for the definition of 

an optimal inclusion probability vector *π  according to the following optimality criterion:  
 

)( * Uk kMin    such that: (a) )(
*

)( )|ˆ( drdrp VtV π    (dr); (b) 10 *  k ,  (4) 
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being )(drV  a fixed variance threshold for the domain dU  on the r-th variable of interest. The search of the *
k , 

denoted by optimization phase; is coupled to a calibration phase. The last phase changes as little as possible the 
optimal probabilities in the calibrated probabilities in such a way that summing up on each domain the calibrated 
probabilities gives an integer. In the paper the optimization phase is described. For calibration phase see Falorsi 
and Righi (2008). The optimization phase implements an algorithm for solving the non linear programming 
problem (4). Nevertheless, we note the (4a) constraints depend on the unknown variables of interest. In practice 
only model predicted values can be used. We show the algorithm in this operative context. We consider a general 
prediction model M 
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We assume 2
rk as known. To take into account the model uncertainty, the (1) is replaced by the Anticipated 

Variances (Isaki and Fuller, 1982) and the constraints (4a) are defined as )(
*

)( )|ˆ( drdrp VtAV π . An upward 

approximation of the anticipated variances for the proposed strategy is  
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where 2
)(

~
kdr  is computed by means of a model predicted value rky~ . The approximation neglects a residual term 

that we do not show for sake of brevity. However, the optimization procedure does not change if the corrected 
anticipate variance is taken into account. To obtain a solution of the optimization problem we formulate 
constraints (5) as 
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Uk dkkkUk dkrkdkkdr ggyfC  , where )~,...,~,...,~(~

1 Dkdkkd gggg , 

dkg~ = )(

~
drk Bδ  with )(

~
drB  given by (2) replacing rky  with rky~ . The optimization phase is performed by the 

proposed algorithm:  

1. Initialization: for  =0, let nπk /1)0(   (k=1,…,N ) be the initial values of the inclusion probabilities, in 

which NnD 2   is a fixed quantity; Dn 2  is a reasonable choice; 

2. Iteration over . for   = 0,1,2,3,…, calculate dkg~)( ;  

3. Iteration over  : 
a. Initialization: for  =0 let kk ππ )()0,(   ; 
b. Calculation: for  =0,1,2,3, calculate 
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c. Updating: calculate k
a  )1,(   such that: 

 
U k

 )1,(  is minimized with  
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  (K =1, …, N ). The optimization is performed by slight modification of the algorithm 

proposed by Chromy (1987). Technical details in Falorsi and Righi (2008); 
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d. Exit rule: let   denote a fixed small quantity. If 

   
U kk

),()1,( ,     (6) 

the iterations over   are stopped and the updated inclusion probabilities kk   )1,()1(    (k=1,…, N ) are 

calculated. Otherwise, the Calculation and Updating steps are iterated with  = +1 until the condition (6) is 
satisfied. 

 
4. General exit rule: if   

   
U kk

)()1( .       (7) 

The algorithm ends and final inclusion probabilities are given by kk   )1(*   (k=1,…, N ). Otherwise, the 

Iteration over   and the Iteration over  are iterated with  = +1, until the condition (7) is respected. 
 

Remark 1. In case of one-way stratified design and when )(

~~
drkdkrky Bδ  the anticipated variance is given by   

 


hd Uk kh rhdrtAV )1/1()|ˆ( *2*
)( π ,     (8) 

where disappear the terms rky~ . In this case the original Chromy algorithm is it suitable to achieve the solution in 

one iteration. The optimal inclusion probabilities are such that hk  * .  

Remark 2. For one-way stratified design with constant inclusion probabilities in each hU  the (8) assumes the 

same form of the (3) except for the variance terms. In (3) these terms represent the design variances while in the 
(8) are the model variances. In practice the (design or model) variance terms have to be estimated and most likely 
these estimates will be based on the same procedure leading to the same sampling allocation.  
 

4. Empirical evaluations 
 
Currently, the proposed algorithm has been applied only in experimental contexts. A simulative study on real 
data of the Italian Graduates’ Career Survey conducted by Italian National Statistical Institute has tested if the algorithm 
converges to an optimal solution. More detailed results are given in Righi and Falorsi (2011). A briefly description of the 
simulation is the following: the survey produces estimates for 8 types of domains with two very detailed not nested 
domain partitions: degree by sex (first partition) and university by subject area degree (second partition). Using the cross-
classified stratification design more than 7,700 strata are obtained for planning 160 plus 90 domains. A Monte Carlo 
simulation has been performed on a sub-population of 3,427 units covering 20 and 15 domains belonging respectively to 
the first and second partition. Two cases have been studied: the first assumed the interest variables as known; the second 
assumed they were predicted. In each case the algorithm has converged with a number of iterations depending on the exit 
rule constraints. We obtain 6 and 7 iteration respectively for the first and second case when we set  = 0. But fixing  = 
0.05 three iterations over  would have been necessary to satisfy the convergence criterion in both cases. The solutions 
have been compared with cross-classified stratification design having 91 strata. This design shows to be inefficient with 
respect to the multi-way design. Adopting the same variance thresholds the one-way design increases the sample size of 
about 7% (and more than 10% in some domains). The bad performance depends on the too detailed stratification 
coupled with the constraints to have 2 units per stratum for computing unbiased variance estimates.  
A second experiment has been performed on the 1999 population of the enterprises from 1 to 99 employees belonging 
to the Computer and related economic activities (2-digits of the NACE rev.1 classification). The data base used for the 
simulation study has N=10,392 enterprises. Two domain partitions have been considered: the geographical region with 
20 domains; the Economic Activity Group by Size class with 24 domains. In the experiment a sample size of 360 units 
has been fixed (for further details see Falorsi and Righi 2008). The size is equal to the combining strata of the one-way 
stratified design. Then the experiment highlights the cases in which the standard design approach for planning each 
domain is unsuitable for budget constraints. An easy strategy is to drop one or more stratifying variables or to group 
some of the categories. Nevertheless, some planned domains become unplanned and some of them can have small or 
null sample size.  
The aims of the Monte Carlo simulation have been: verify the performances of the random selection scheme with a large 
population and many domains; compare some sampling strategies based on a multi-way stratified design, feasible in a 
large scale surveys and the one-way stratified designs where strata are given alternatively by the domains of a singular 
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partition. A compromise (not optimal) sample allocation has been used and the calibration phase has been performed. 
The simulation underlined the selection based on the cube algorithm is feasible and that controlling the sample on the 
small domains by means of multi-way design gives a significant improvement on the accuracy of the estimates.  
 

5. Conclusion  
 
Multi-way (or incomplete) stratification design is a useful sampling approach when the planning of the sample 
size for domains belonging to different partitions of the population is required. Usually, to achieve this task, the 
standard approach is based on a stratification given by the combination of these domains (cross-classified or 
one-way stratification) because the random selection scheme is straightforward to implement. Nevertheless, the 
approach may have some drawbacks: the stratification has not the aim to improve the efficiency of the estimates; 
the sample allocation may not be optimal due to minimum sample size constraints in each stratum; statistical 
burden may occur in small strata; too detailed stratification could need a too large sample with respect to the 
budget constraints. 
These problems arise especially in the business survey in the Official Statistics. In fact, the European Council 
Regulation on Structural Business Statistics establishes that the parameters of interest refer to estimation domains 
defined by three different partition of the enterprise population. In the Italy case about 1,800 estimation domains 
are defined while the number of non-empty strata of the cross-classification design is larger than 37,000. 
Therefore, the design require a large sample only to cover each stratum. 
On the other hand, the multi-way stratification design often has as main trouble the implementation of a random 
selection scheme especially with large population. Recently, the cube algorithm, proposed Deville and Tillé 
(2004), overcomes such drawback and the design may be applied to the large scale surveys as well.  
The paper focuses the sampling allocation issue in the multi-way design. An algorithm for computing the optimal 
inclusion probabilities, which is the optimal sample allocation, is defined. The algorithm implements the 
allocation for a general multi-way sampling design in which the standard approach (one-way stratification) is a 
special case. Moreover, the allocation is multi-domain and multivariate: the sample size is minimized 
guaranteeing that the sampling variances of the target estimates of several variables on the planned domains are 
lower than prefixed level of precision thresholds. As for other common allocation procedures, the proposed 
method requires the knowledge of the variables of interest while in practice only predictions may be available. 
Then the algorithm takes into account the prediction uncertainty. 
Some experiments, shortly described in the paper, have been performed. They have several tasks: verify the 
algorithm in terms of convergence; compare the sample size of the multi-way stratification with respect to a one-
way stratification design; confirm the multi-way random selection algorithm is suitable when many planned 
domains are involved; evaluate the improvement of accuracy of the small domains when the sample sizes are 
planned by means of the proposed method. The simulations have given satisfactory results. 
Further experiments are need especially for stressing the allocation procedure on large data sets. In particular, to 
have some indication on the computational effort and to confirm the proposed algorithm converges to an 
optimal solution. 
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