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ABSTRACT

X-12-ARIMA is a frequently used tool for seasonal adjustment. To find the best
decomposition into trend, seasonal and irregular components several modeling decisions
have to be taken. When a new data point is available we also have new information about
the seasonal pattern and the decomposition model can be updated. The consequence is
that seasonally adjusted data are revised. Choosing seasonal adjustment methodology can
be viewed as a question of balancing the requirement of optimal seasonal adjustment at
each time point against the requirement of minimal revisions.

In this paper history analysis of 52 Norwegian economic time series has been conducted.
Seasonal adjustment revisions are mainly caused by revisions of seasonal factors. Revisions
of prior adjustments (calendar effects) are less important. This paper demonstrates
how several modeling choices (ARIMA model, trading day, holiday treatment) affect
revisions. The treatment of outliers (extreme observations and level shifts) is related to
both prior adjustments and seasonal factors. When a completely automatic procedure for
detecting outliers is applied, re-identification of outliers leads to big revisions. This paper
demonstrates how revisions and out-of-sample forecasts (quality of model) are affected by
the outlier detection limit. The analyses were made by running X-12-ARIMA via the R
programming language.

Introduction

Times series analysis by using regARIMA models (linear regression models with ARIMA
time series errors) is an important part of seasonal adjustment methodology. Alternative
modeling variants can be compared fairly by looking at out-of-sample forecasts and
revisions. How well the regARIMA models describe the data can be evaluated by out-
of-sample forecast diagnostics. Since the model changes over time, the level of revisions is
another important quality aspect.

In X-12-ARIMA revision diagnostics are based on absolute values of relative differences.
On the other hand, the history analysis of X-12-ARIMA produces sums of squared out-of-
sample forecast errors based on log-transformed data. However, in this paper, revision
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Table 1: Difference measures used to calculate root mean square error (RMSE).
Difference measure

One-month revisions of seasonally adjusted data log(At|t+1) − log(At|t)

One-year revisions of seasonally adjusted data log(At|t+12) − log(At|t)

First-year average absolute month-to-month
revisions of seasonally adjusted data

1

12

12∑
h=1

∣∣∣log(At|t+h) − log(At|t+h−1)
∣∣∣

One-month out-of-sample forecasts log(Yt+1|t) − log(Yt+1)

differences and forecast errors will be treated in a similar way. Technical details are
described in the next section. The later section will illustrate how ARIMA model selection
procedures and outlier detection procedures affect revisions and forecasts.

A unified approach for forecast errors and revisions

Assume a time series Yt where t = 1, 2, . . . , N . By using time series modeling, an h-step
ahead forecast, Yt+h|t, can be produced. The relative forecasting error on the original scale
is approximately equal to the absolute error on the log scale (natural logarithm). More
precisely we have the inequality

Yt+h|t − Yt+h

Yt+h|t
≤
(
log(Yt+h|t) − log(Yt+h)

)
≤

Yt+h|t − Yt+h

Yt+h

(1)

Thus, the log-scale difference can be interpreted as a relative difference. Furthermore, it can
be viewed as a compromise between Yt+h|t and Yt+h as the denominator when calculating
the relative difference.

The forecasting errors on a time interval can be summarized as the root mean square
error (RMSE):

RMSE =

√√√√√ 1

N1 −N0 + 1

N1∑
t=N0

(
log(Yt+h|t) − log(Yt+h)

)2
(2)

The relation between relative difference and log-scale difference can be expressed
similarly for seasonal adjusted data. That is

At|t+h − At|t

At|t
≈
(
log(At|t+h) − log(At|t)

)
(3)

where At|t+h is the seasonal adjustment of Yt calculated from the series where Yt+h is the
last observation. Commonly, percentage revisions (multiply by 100%) are based on the left
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Figure 1: RMSE of one-month revisions of seasonally adjusted data. Results from
the history analysis of 51 series are plotted. Two ARIMA model selection procedures
(left panel) and two outlier detection limits (right panel) are compared. The diagonal line
represents equal values.

side of this expression. However, in this paper, the log-scale difference is used (right side).
Note that in practice the difference between the two approaches are almost negligible.

Below, monthly data will be analyzed and three types of revision measures will be
considered. In addition we will look at one-month out-of-sample forecasts. All four
measures are described in Table 1. The RMSE in equation (2) corresponds to the last
line in Table 1 (h = 1). Below we also summarize revisions by calculating the RMSE
similar to equation (2). Then, the expression inside the brackets is replaced by a difference
measure in Table 1.

History analysis of 52 series

We consider 52 Norwegian economic time series. There are 32 series that are related to
the production index (years 1989-2009). The addtional 20 series are related to the index
of household consumption of goods (years 1979-2009). The time intervals for the history
analyses are set to the last 14 and 20 years, respectively.

Two ARIMA model selection procedures were compared; automdl (default) and
pickmdl. When using pickmdl only five model candidates were allowed. The automdl

procedure selects the model from a broader range of candidates. To ensure that the ARIMA
model was the only modeling difference, fixed outliers were used. These outliers were found
from a single analysis of the whole series by using the ARIMA model according to automdl.
Effects of trading days and moving holidays were included in the regression specification.
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Figure 2: RMSE of one-year revisions of seasonally adjusted data. Results from
the history analysis of 51 series are plotted. Two ARIMA model selection procedures
(left panel) and two outlier detection limits (right panel) are compared. The diagonal line
represents equal values.

Two outlier detection limits (t = 4 and t = 8) were compared in a similar way. Both
additive outliers and level shifts were allowed. The results are given in Figures 1-4. Each
point in each scatter plot represent the results from one series and RMSE were calculated
as described above. The values of the axes are percentages. One series with extreme
behaviour was omitted from the plotting (because of axis limits).

Concluding remarks

The above plots illustrate overall differences between two methods. Note that these overall
differences are caused by important single-observation differences (e.g. when the model
changes). The results illustrate that purely automatic use of X-12-ARIMA leads to revision
problems. These problems can be reduced by using pickmdl instead of automdl and by
increasing the outlier detection limit. However, a better solution is to handle these problems
in a non-automatic way.

The analyses were done by running X-12-ARIMA several times using the R program-
ming language. This is more flexible than the built-in history procedure. We now use this
program system to investigate the treatment of holidays at Statistics Norway.

The oral presentation will contain additional results. The treatment of trading days
and holidays will be analysed. Furthermore, plots based on non-squared differences will
also be shown.
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Figure 3: RMSE of first-year average absolute month-to-month revisions of
seasonally adjusted data. Results from the history analysis of 51 series are plotted. Two
ARIMA model selection procedures (left panel) and two outlier detection limits (right
panel) are compared. The diagonal line represents equal values.
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Figure 4: RMSE of one-month out-of-sample forecasts. Results from the history
analysis of 51 series are plotted. Two ARIMA model selection procedures (left panel) and
two outlier detection limits (right panel) are compared. The diagonal line represents equal
values.
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