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Abstract

With weights one can compute moments of a distribution of study
variables over a receptor set where only auxiliary variables are known,
provided study variables and auxiliaries are related exactly as in some
donor set. Fuzzy post-stratification (FP) aims at consistent estimation
of such weights.

A core computational trick of FP is a semi-parametric representa-
tion of the propensity to belong to the receptor set given auxiliaries.
This is obtained with model-based post-stratifications and an EM-like
algorithm. The fuzzyness of the resulting weights comes from the fact
that the algorithm does not converge to a single vector of weights
when the receptor set is finite. Rather a set of weights are plausible,
and their mean is the fuzzy weights.

FP can be combined with generalized regression calibration. The
technique is demonstrated for a test set from the Norwegian farm
account survey.

∗Thanks to Erwin Kalvelagen, GAMS Development Corp. for programming problem
solving, to Leiv Solheim, Statistics Norway, and Seppo Laaksonen, University of Helsinki
for comments, and to Knut Skarsem, NILF for preparing data.
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1 Donors, receptors and weights

Several tasks within survey sampling has a common structure: Study vari-
ables and auxiliary variables are observed on a sample of units (the donor
set), while auxiliary variables only are observed on an additional set of units
(the receptor set).1 Population and small-area estimation, and correction for
unit and item non-response are all tasks of this structure with different recep-
tor and donor sets. An obvious question in this context is then: what are the
moments of study variables over the receptor set given that the relationship
between the two groups of variables are the same as in the donor set? As
survey statisticians usually ask only about the means of study variables over
receptor units, the level of ambition is somewhat increased.

In the standard case: when the auxiliary variables represent binary in-
dicators of memberships in a collection of strata, the answer to this general
question is relatively simple and conforms with standard survey methods.
More precisely, it can then be shown that three well-known methods —
post-stratification, regression calibration and OLS-based generalized regres-
sion calibration — all provide identical weights on the donor units with which
moments of the unknown distribution of receptor units can calculated.

With more or less continuous and dependent auxiliaries, the three meth-
ods provide different weights. How should such information then be exploited
in the calculation of weights? Since the ambition is to estimate probability
weights, I have chosen to transform general auxiliaries into indicators of post-
strata membership using models.

2 An EM-like algorithm

A rule of thumb for stratification is that the variance of study variables should
be relatively small within strata. With this motivation I construct model-
based nearest neighbor post-strata around each distinct auxiliary observation
in the donor set. The mentioned model is estimated with information from
the donor set. A stratum consists of those points which has their predictions
closest to the prediction at a certain donor point. Given this stratification,
the elements in the donor and receptor sets can be counted. The model
contingent weight within a stratum is simply the receptor count divided by
the donor count. Receptor count divided by donor plus receptor count is the
propensity of being a receptor within the model contingent stratum.

Model dependence is considered a nuisance in survey statistics. The
model should satisfy some optimality criterion, and uncertainty of the model

1The terms ”donor” and ”receptor” are taken from Zhang and Nordbotten (2008).
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need to be accounted for. These challenges will be faced here.
Clearly, the prediction model to be applied for nearest neighbor strat-

ification should be just as reliable over the receptor set as over the donor
set. Intuitively, this means that estimation should take place over the joint
donor-receptor set. Only observations form the donor set is available, but
the receptor set can be incorporated by means of weights on the donor obser-
vations. The weights to be applied in estimation is thus donor plus receptor
count divided by donor count, ie. the inverse of the propensity to belong to
the donor set. Moreover, it can be shown from insights of information theory
that estimation should be conducted with maximum likelihood or equivalent
methods.

The situation is now that an optimal model contingent on weights, and
weights contingent on a model, both can be found. This resembles an EM-
algorithm with the estimation of the model using maximum likelihood and
preliminary weights is the M -step, and with the calculation of weights using
the prediction model is the E-step. Mathematically, this is an issue of ex-
istence of a fixed point of weights in the mapping from preliminary weights
through the weight dependent model to model dependent weights. Basically,
such a fixed point is not likely to exist when the receptor set is finite. A
crucial assumption of continuity of the involved mapping is not satisfied, an
the EM-algorithm cannot be expected to converge. Nevertheless, it will end
up in some repeating cycle, and the set of weights of the cycle are all equally
plausible model-based weights. Their arithmetic mean — which depends on
a set of models/stratifications — is the fuzzy weight. A convenient aspect of
these weights is that the uncertainty inherited from models is considerably
smaller when relying on a set of models than relying on a single one.

3 Singular value decomposition regression

When surveys has hundreds of study variables and auxiliary variables, it is
convenient to treat them as two blocks of variables related in a single model
so that a single vector of weights can be estimated. GLS is such a method.
However, general auxiliary variables tend to be close to singularity. In small
samples GLS is then known to provide high-variance parameter estimates,
and some alternative method is desirable. Methods much used in the cal-
ibration literature are partial least squares (PLS) (Wold 1982) and ridge
regression (Hoerl and Kennard 1970). Both reduce variance by accepting
some bias, but their asymptotic properties are unclear. A promising recent
method with GLS asymptotics is lasso regression (Tibshirani 1996), but no
multivariate version of this seems yet developed.
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To come by the problems of GLS without sacrificing the convenient asymp-
totic properties of that method, a simple modeling strategy singular value
decomposition regression (SVDR) is applied. SVDR starts out (like PLS)
from the singular value decomposition of the weighted covariance matrix of
study variables and auxiliaries. This decomposition contains pairwise cor-
related components of study variables and auxiliaries, and some additional
components of study or auxiliary variables. When all components are em-
ployed we are effectively doing GLS. Simpler models with less variance utilize
only a few of the most correlated pairs of components. The choice of the num-
ber of components can be taken with respect to a model selection criterion
which combines model fit with a penalty for the degrees of freedom of the
model. Zou, Hastie, and Tibshirani (2007) recommend Schwarz’ information
criterion (BIC) for this purpose. Since the penalty depends inversely on the
number of observations, it will vanish when the number of observations grows
towards infinity, and the asymptotic properties of SVDR is that of GLS.

With SVDR as the method of estimation, it is ensured that estimated
prediction models are consistent, and so are the estimated weights provided
the assumption of identical stochastic relationship between study variables
and auxiliaries in the donor and receptor set holds.

4 Combination with generalized regression weight-

ing

Continuous auxiliary variables may contain more information than fuzzy
post-stratification takes care of. More precisely, the donor units within a
post-stratum may not be representative for the receptors. This will in par-
ticular be the case in small samples. Fuzzy post-stratified moments may
then be biased, and GLS-based GREG-adjustment of the weights can be
conducted. Moment constraints are then conveniently specified in terms of
the components of the SVDR-regression. The selection among SVDR mod-
els will then ensure that only the most relevant calibration constraints are
imposed.

The GREG-adjustment should be conducted for each model of the EM-
like algorithm. The adjusted fuzzy weights will then be the arithmetic mean
of adjusted weights over the same set of weights which constitute the fuzzy
weights.
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5 A case study

The empirical background for this paper is a business survey of Norwegian
farmers (”Driftsgranskinger for jordbruket”) (NILF 2007). This survey is
hampered by poor design and heavy non-response. However, quite a lot of
information on the non-surveyed farmers exist, and it is of importance to
utilize that information in the best possible way to produce weights to make
a representation of the population.

Farm accounting surveys has traditionally been stratified according to
region, farm type and farm size, for design weights (FADN 2007) and post-
stratified weights (Meier 2000). The results with FP are contrasted with
those of such traditional post-stratification.

We will not bother the reader with a lot of study variables, and will only
state results in terms of a single key variable, net income of agriculture, and
its weighted means. All results are obtained with 50 iterations for a test
subset of the survey of 137 observations. The number of receptors are 5107.
Except for one model the algorithm did not converge to a repeating cycle, but
since weight estimates are consistent anyway, the estimates can be applied
as soon as they are relatively stable. Reported models are from the sequence
which comes closest to a repeating cycle.

Variance is distinguished according to source. One part is caused by
sampling. This is found by calculating weights over various resamples during
the EM-algorithm. Another part is caused by modeling, and is found from
the various models involved. Coefficient of bias is calculated as the bias
correction relative to the un-weighted model divided by the bias corrected
mean. The coefficient of ∆MSE is calculated as the square root of the
difference of MSE for the corrected (assumed unbiased) and un-weighted
models divided by the bias corrected mean.

Results are stated for several alternative versions of the fuzzy post-stratification.
First, in table 5 there are four different model types in the EM-algorithm:
”SVDR n” means SVDR-model with n pairs of factors. ”GLS” means GLS-
model of all explaining and explained factors. Moreover, there are two dif-
ferent frames. ”Standard” refers to indicators of groups according to region,
farm type and farm size. ”Extended” refers to a large set of continuous
variables of farm size with respect to different crops and livestock, climate
variables, farmer age and household composition, and polynomials thereof,
in addition to indicators above.

The coefficients of variance can be compared to that of the un-weighted
mean, 0.0529. All versions of fuzzy weights have somewhat larger variance,
but contrasts are not great. Contrasts are more pronounced with respect to
bias-correction. Both the most simple and most complex models have smaller
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Table 1: Summary statistics and coefficients of variance, bias and difference
of mean squared errors of estimated population means using fuzzy weights.
Extended and standard frames. Various model types

Frame Extended Standard
Model selection SVDR 1 SVDR 2 SVDR 3 GLS SVDR 3
Number of models 47 24 41 25 4
Mean R2 0.1167 0.2210 0.2472 0.6902 0.1218
BIC 2.9655 2.6611 2.6002 24.5066 2.0980
Sampling CV 0.0782 0.0800 0.0682 0.0461 0.0681
Modeling CV 0.0096 0.0033 0.0041 0.0039 0.0135
Coefficient of bias 0.1314 0.2408 0.2351 0.1978 0.1303
Coefficient of ∆MSE 0.1251 0.2391 0.2367 0.2066 0.1311

bias correction than those of intermediate complexity. An overall impression
is that fuzzy weights are not very sensitive to model selection criteria. Even
GLS model which according to its BIC value is largely over-fitted, has sensible
results. Among the presented extended models the (SVDR 3) has the best
BIC-score.

The extra uncertainty introduced with the use of prediction models in
FP seems almost negligible. One should note, however, that the uncertainty
by relying on a single model is

√
# models times the modeling uncertainty

here. For the extended models this is not negligible. Hence, fuzzyness pays
by reducing variance.

The contrast between the standard and the extended frame is very clear
with respect to bias-correction. Stratification with respect to region, farm
type and farm size seems insufficient compared to our fuzzy stratification
based on three components. The single variable which seems most important
in this respect is the age of the farmer.

In table 5 results are presented for some GREG-adjusted fuzzy weights.
The GREG-adjustments of fuzzy weights reported here shows some of

the characteristics of this method. For the SVDR-models, the adjustment
means virtually nothing as the fuzzy weights did a good job in calibrating
the survey sample. Only the GLS-model is of interest as the bias correction
turns out incredibly large. The over-fitted GLS model is not at all suitable
as a foundation for GREG-adjustment of weights. Variances are also large.
Anyway, a clear message is that GREG-adjustment is sensitive to model type.
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Table 2: Coefficients of variance, bias and difference of mean squared errors
of estimated population means using fuzzy weights adjusted with generalized
regression calibration. Extended and standard frames

Frame Extended Standard
Model type SVDR 3 GLS SVDR 3
Sampling CV 0.0652 0.1830 0.0685
Modeling CV 0.0044 0.0232 0.0099
Coefficient of bias 0.2268 2.7539 0.1292
Coefficient of ∆MSE 0.2287 2.7579 0.1301

6 Conclusions

This article gives a statistical treatment of the problem of inference from a
finite donor set of study variables and auxiliaries to a finite receptor set of
auxiliaries only. An essential assumption in this respect is that the statistical
relationship between study and auxiliary variables are identical in the two
sets. This is basically a non-testable assumption. Only when additional
variables are introduced, can one reject the assumption for the previous set
of auxiliaries.

The model dependence of the fuzzy weights does not seem to be a prob-
lem, when one both accounts for the induced variance, controls for it by tacit
model selection, and at last take average over models. Since, fuzzy weighting
is a generalization of standard weighting over a predefined stratification, one
might say that standard methods are not model free. There is always some
model involved, but with standard weighting the available data — the stra-
tum membership indicators — does not allow any questioning of it. With
fuzzy post-stratification we have moved beyond the predefined stratification
and let the data speak.

The test calculations suggest that fuzzy post-stratification is a productive
way of dealing with general donor/receptor problems. When required, the
method can be combined with GLS-based GREG-adjustment of the weights
to eliminate bias. Model selection is a sensitive issue for these adjustment,
and the selection procedures developed for the fuzzy weights seem even more
important in this context.
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