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1. Unit scores in selective editing 
 
Errors in data haunt practitioners in statistics. It is sometimes possible to recontact the 
individual or, in general terms, the object, and make another observation. It is usually 
necessary to prioritize those objects that are most cost-effective to recontact. For 
multivariate observations there are several items per unit. Usually we want to edit and 
verify all observed values of the unit in one go rather than each item separately, that is, 
we want to select a unit to recontact, not an item. So the item scores need to be 
combined to a unit score. The unit score indicates the importance of recontacting the 
unit.  
 
We need to distinguish different editing situations. In terms of error structure, there is 
measurement bias and measurement variance in the balance. Some errors may be very 
large, such as scanning and other recording errors and misreporting errors including unit 
errors (e.g. monetary values given in SEK instead of the requested SEK1000). In 
principle, there are three editing situations in terms of error structure: 
 
i. Very large errors in the data (such as unit errors) 
ii. No very large errors remain but there may nevertheless be non-negligible bias due to 

many small errors of the same type 
iii. Errors of the first two types have largely been cleared out through continuous 

improvement of measurement processes; the errors consist now mostly of zero-
mean random measurement errors uncorrelated over observations from different 
units. Items within unit may be correlated. 

 
The very large errors in Situation i should not be difficult to identify. Errors that arise in 
Situation ii are sometimes referred to as inliers (Granquist 1995).  In Situation iii there 
may under some circumstances be little need for editing. Hedlin (2003, p. 193) 
discusses in what situations the practitioner can rely on the law of large numbers to 
cancel out errors when computing estimates. Errors in data for one business may be 
correlated with those for other businesses. The reason may be questionnaire design that 
invokes the same type of error by responders or systematic processing errors on the part 
of the statistical agency. That is to say, it is not uncommon for business surveys to be in 
Situation ii. 
 
While the item score (1) introduced below is motivated from a design-based survey 
perspective centring on a particular estimator, we shall in Section 2 show that there is a 
more fundamental reason why kjkj zy −~ , where kjy~   is a prediction of , is a generally kjy
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useful building block. Consider the Horvitz-Thompson (HT) estimator �=
s kjkj zwt̂  of 

the total �=
U kjj yt , where s denotes the sample and U the target population. The    

kw ‘s are survey weights. In the univariate case we shall often drop the subscript j.  

Let an item score be ( ) tt k
ˆˆ − , where ( )kt̂  is the same as t̂  except that for unit k the 

observed value of the study variable is replaced by the predicted value. Then the item 
score for the HT estimator is  

kjkjkkj zyw −= ~~δ ,
  

   (1)
 

(Latouche and Berthelot 1992, Lawrence and MCDavitt 1994). The unit score is often 
used to divide data into two lots: if the unit score is above a threshold, observations of 
the unit’s values should be edited. If it is below, the unit is either left unattended or 
some automatic editing is performed. Alternatively, a random subsample may be drawn 
with inclusion probability proportional to unit score. Optimal subsample design will be 
treated elsewhere. Even if the ambition is to follow up all units, the unit score will give 
management a tool for prioritization of the order of the work. 
 

Denote a unit score function by ( )kg � , where ( )′= kpkk γγ ...,,1�  with 0≥kjγ , 
j = 1, 2, …, p,  is a generic notation for the p-vector of item scores for unit k. Latouche’s 
and Berthelot’s (1992) unit score is ( ) �=

j
kjksumg γ� , whereas Lawrence and McDavitt 

(1994) and Hedlin (2003) use the maximum of the item scores as their unit score, 
( ) ( )kj

j
kg γmaxmax =� . Farwell (2005) proposes a compromise between the sum and the 

maximum based on the Euclidean distance:  ( ) �=
j

kjkesumg 2γ� . 

 
The unit score functions gsum, gesum and gmax, referred to as the sum, the Euclidean and 
the max function, respectively, are special cases of  
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kjk pg �      ( 2 ) 

where 1≥λ , with  ( ) ( )ksumk gpg �� =;1; ,  ( ) ( )kesumk gpg �� =;2;  and 
( ) ( )kk gpg �� max;;lim →

∞→
λ

λ
 (e.g. Friedman 1982). The function (2) is known as 

Minkowski’s distance or metric.  

2. Which unit and item score functions? 
 
We shall discuss various unit score functions under the following stipulations.  
1. If one item in a unit is edited, so are all other items for the same unit. 
2. The cost of editing an item is the same for all items, irrespective of the data value 

being erroneous or not. 
3. The measurement model M is kjkjkj RZY += , where kjR  is a measurement error 

associated with the reported data value kjZ .  
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4. In Situation iii,  ( ) 0,cov =ljkiM RR  and ( ) 0=kiM RE , ji,∀  and lk ≠ , where M 
refers to the measurement error model. 

5. When a data value is edited the result is kjy .  
 
There are several desirable aims of editing, including the following criteria. 
1) Errors remaining after selective editing should, in some sense, be as small as 

possible: 
a) In Situation iii, minimum measurement variance under fixed cost 
b) In Situation ii, minimum bias in absolute terms under fixed cost 

2) The editing process should allow the producer to control the effect of errors: 
a) Fixed maximum measurement variance for each variable 
b) Fixed maximum bias in absolute terms for each variable 

A common criterion for biased estimators is minimum MSE, which is an alternative to 
Aim 1a. In official statistics and many other applications, however, non-trivial bias is 
undesirable, even if the MSE is low.  
 
We discuss unit score functions under these stipulations and criteria. We shall examine 
what unit score functions are suitable for Aims 1 a-b and 2 a-b. To keep notation simple 
we shall for the moment consider only the univariate case. Let the HT-estimator yt̂  with 

the subsample sa ⊂  edited be denoted by ayt ;
ˆ . The measurement variance of the error 

in ∅;
ˆ

yt  conditional on s is  

( ) ( )�=− ∅ s kkMysyM Rwtt varˆˆvar ;;   ( )��=
s lkMlk RRww ,cov

  
 

If the set a is edited to meet Aim 1a then under Stipulation 5,  
( )aysyM tt ;;

ˆˆvar − � −
=

as kkw 22σ ,      

where ( )kMk Rvar2 =σ . The set a containing the units with the largest 22
kkw σ  minimizes 

( )aysyM tt ;;
ˆˆvar − . To minimize the sum of the measurement variances in the multivariate 

case, ( )� −
j

aysyM jj
tt ;;
ˆˆvar , the set a will be the set containing the units with the largest 

�� ==•
j

kjk
j

kjk wvv 22 σ .   

Proneness to measurement error often varies from respondent to respondent. If kjy  were 

known ahead of recontact, it would be reasonable to estimate kjσ  in Situation iii with 

kjkj zyc −  for some constant c > 0. To estimate 2
kjσ  in Situation iii we use  

( )2222 ~ˆˆ kjkjkkjkkj zywwv −== σ     (3)  
disregarding the constant c which will not alter the order of observations given by the 
unit score. Hence with kjδ~  defined as in (1) the criterion of minimum 

( )� −
j

aysyM jj
tt ;;
ˆˆvar  under fixed cost in Situation iii leads to the Euclidean unit score 

with ( )′= kpkk δδ ~
...,,

~
1�   and 2=λ . Note that we in (3) recover the building block 
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kjkj zy −~  in (1). With many other estimators of other parameters the quantity in (3) 

would still be central although the weights wk would be different.  
 
Turning to Situation ii and Aim 1b, consider 

( ) ��� −
=

j
as kjk

j
ayM wtbias

j
µ;

ˆ     (4) 

where ( )kjMkj RE=µ . An upper bound of (4) is �� −
j

as kjkw µ , which is minimized by 

the set a containing the units with the largest �=•
j

kjkk wb µ . As an estimator of 

kjkkj wb µ=  we may use (1). Hence with kjδ~  defined as in (1) the criterion of minimum 

�� −
j

as kjkw µ  under fixed cost and Situation ii the unit score function is the sum 

function with ( )′= kpkkk δδδ ~
...,,

~
,

~
21�  and λ = 1. Minimizing mean squared error calls for 

a compromise between λ = 1 and λ = 2. 
 
However, to see that editing under a fixed budget will not necessarily improve estimates 
in terms of bias, consider a sample s of six units with realized values 1−== kkkk rwRw  

for 5...,,2,1=k , and 566 =rw . If no unit is edited the realized error in ∅;
ˆ

yt , that is 

� s kk rw ,  vanishes. If we can afford having a set a edited, the realized error � −as kk rw  

will be larger than zero unless a = s or ∅=a . 
 
Consider now Aims 2a-b. It should be noted that neither editing strategy so far 
guarantees that the error for a particular variable is within some bound. The max 
function is the only unit score that meets this requirement. Suppose we need an a that 
makes either �a kjkw 22σ or�a kjkw µ

 
smaller than some predetermined number for each 

j. This strategy cannot operate under a fixed budget, at least not if the budget constraint 
is imposed strictly. One way to control �a kjkw 22σ  (or �a kjkw µ ) for a particular j is to 

send to editing any unit where τ≥2ˆkjv  (or τ≥− kjkjk zyw ~ ) for any j = 1, 2, …, p. The 

unit score function is the max function in both cases. 
 
A potential problem with (1) is the prediction error in kjy~ . It can be shown that the max 
function is more robust than unit score functions with finite �.  

3. Application 
 
A general issue with the evaluation of real edited data is that the errors documented are 
only the errors found. To gain control of the errors we constructed a data set with true 
values kjθ , j = 1, 2, 3, k = 1, …, 10000, in accordance with the gamma distributed 
Populations 1, 3 and 12 in Lee et al. (1994). For each unit a true, an erroneous and a 
predicted value were generated. An erroneous value is the true value with a 
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measurement error added, which may be minute. 29% of the reported units were 
erroneous. In an erroneous unit, all values were incorrect. They were generated as 

( )111 exp kkk xz += θ , ( )2
1.0

122 exp kkkk xzz += θ  and 3
5.0

333 kkkk xz θθ += , where the kjx ’s 

were realized pseudo-random standard normal variables. Note that 1kz  and 2kz  are 

correlated within unit. Predicted values were generated as 1
5.1

111 96.0~
kkkk xy ′+= θθ , 

2
5.1
222 91.0~

kkkk xy ′+= θθ  and 3
25.0

333 2.089.0~
kkkk xy ′+= θθ , with the kjx′ ’s taken from a 

standard normal distribution. The predicted values are meant to resemble values from a 
previous wave of the survey. Then 1000 populations were created with new reported 
values in each population. The true and predicted values were retained over simulations. 
A second and a third suite of 1000 populations each were created. The erroneous values 
were generated as ( )1

2.0
111 exp3 kkkk xz ′′+= θθ , ( )2

1.0
222 exp5 kkkk xz ′′+= θθ  and 

3
5.0

333 kkkk xz ′′+= θθ  for suite 2 and 1
25.0

111 kkkk xz ′′′+= θθ , 2
1.0

222 kkkk xz ′′′+= θθ  and 

3
5.0

333 kkkk xz ′′′+= θθ  for suite 3. Note that suites 1 and 2 are in Situation ii. The predicted 
values were generated through the same formulae in all suites. We refer to the editing 
methods that unrealistically use the true value instead of the predicted value to ‘ideal 
methods’. 
 
The sum, Euclidean and max unit score functions, both the realistic and ideal versions, 
were applied to the populations with 200 units edited. When a value was edited the true 
value was recovered. Biases and variances were computed for each variable and unit 

score. The bias was estimated as ( )=ayM j
tb ;

ˆ  ( )( )� −
∅ −

I

ayy NItt
jj

ι

1
;; ,  j = 1, 2, 3, where 

ay j
t ;  is the population total in a self-representing sample with set a edited, N = 10000 

and I = 1000 is the number of simulations. The variance was estimated as ( )=ayM j
tv ;ˆ  

( )[ ] ( )� −−−∅

I

ayMayy NItbtt
jhjj

ι
1ˆ 2

;;; . Table 1 reports on the sum of the biases in absolute 

terms, ( )�
j

ayM j
tb ;

ˆ , and the sum of the variances, ( )�
j

ayM j
tv ;ˆ , for selective editing with 

each of three unit score functions and for no editing at all. The potential of selective 
editing to substantially limit editing is again corroborated. The ideal scores in Table 1 
confirm that the Euclidean function is in theory the best choice for minimizing the 
measurement variance. However, as seen from the realistic scores the max function 
works better in practice in two out of three suites due to its greater robustness to 
prediction error. The greatest difference between unit score functions should be found in 
data with positive correlation within units. Indeed, for suite 1 the sum function performs 
relatively worse than for suites 2 and 3. We may also suspect that the difference 
between the sum function and the others grows with number of variables and with 
number of units edited up to a limit where the editing becomes close to being 
exhaustive. This is borne out by simulations not shown here. 
 
In terms of bias there is little difference between the realistic unit score functions 
although the sum function is the best one among the ideal score functions for data 
without extreme errors. For suite 3, which has normally distributed errors uncorrelated 
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within unit, there is little to choose between in terms of unit score. Note that the editing 
through realistic unit scores increases the bias in suite 3.  
 
Table 1. Sum of variances and biases under six unit scores and no editing 
 Sum of variances Sum of biases in absolute terms 
 Suite 1 Suite 2 Suite 3 Suite 1 Suite 2 Suite 3 
Sum 
function 

34.2 868.8 26.9 1.25 8.67 0.0807 

Euclidean 
function 

33.1 862.9 26.4 1.23 8.67 0.0924 

Max 
function 

32.5 863.2 26.0 1.22 8.67 0.0995 

Ideal sum 
function 

30.6 865.4 24.1 1.10 8.66 0.0015 

Ideal 
Euclidean 
function 

30.3 861.7 24.0 1.12 8.66 0.0015 

Ideal max 
function 

30.4 862.0 24.0 1.12 8.67 0.0016 

No editing 57.7 6109.2 ⋅  29.2 1.36 20.59 0.0022 
 

4. Discussion 
 
We have shown that unit score functions widely used in surveys share the same form 
which can be expressed as Minkowski’s metric with the sum function and the max 
function as the two extreme choices. This puts the various unit score functions in the 
same basket and shows how they are related. It facilitates software implementation. 
 
We have discussed the best choice of unit score function in a situation where errors in 
different units are uncorrelated and have zero mean. We have argued that in this 
situation either the Euclidean unit score function proposed by Farwell (2005) or the 
maximum unit score function is a good combination of the item scores in (1) with a 
strong preference of the latter due to its greater robustness. The Euclidean unit score 
function does not impose a limit for the bias of a particular variable. If such a limit is 
called for, it is necessary to make use of the maximum unit score function.  
 

REFERENCES 
FARWELL, K. (2005). Significance Editing for a Variety of Survey Situations. Paper 

presented at the 55th session of the International Statistical Institute, Sydney, 5–12 
April. 

FRIEDMAN, A. (1982). Foundations of Modern Analysis. New York: Dover. 
GRANQUIST, L. (1995). Improving the Traditional Editing Process. In Business 

Survey Methods, eds. B. Cox,  D. Binder, N. Chinnappa, A. Christianson, M. 
Colledge, and P. Kott, New York: Wiley, 385-401. 

GRANQUIST, L. and KOVAR, J.G. (1997). Editing of Survey Data: How Much is 
Enough? In Survey Measurement and Process Quality, eds L. Lyberg, P. Biemer, M. 



 7 

Collins, E. de Leeuw, C. Dippo, N. Schwarz, and D. Trewin, New York: Wiley, 
415-435. 

HEDLIN, D. (2003). Score Functions to Reduce Business Survey Editing at the UK 
Office for National Statistics. Journal of Official Statistics, 19, 177-199.  

LATOUCHE, M. and BERTHELOT, J.M. (1992). Use of a Score Function to Prioritize 
and Limit Recontacts in Business Surveys. Journal of Official Statistics, 8, 389-400. 

LAWRENCE, D. and MCDAVITT, C. (1994). Significance Editing in the Australian 
Survey of Average Weekly Earnings. Journal of Official Statistics, 10, 437-447. 

LAWRENCE, D. and MCKENZIE, R. (2000). The General Application of Significance 
Editing. Journal of Official Statistics, 16, 243-253. 

LEE, H., RANCOURT, E., and SÄRNDAL, C.-E. (1994). Experiments with Variance 
Estimation from Survey Data with Imputed Values. Journal of Official Statistics, 10, 
231-243. 


